INTRODUCTION: Breast cancer is the most common invasive cancer in women and represents 16% of all female cancers worldwide. Early detection of this cancer by mammography has shown a significant impact on the reduction of mortality. In order to increase the sensitivity of breast cancer detection using mammography it has been proposed the breast density as a new independent risk factor. The estimation of breast density is currently conducted visually and non-quantitatively by radiologists, based on heavily post-processed X-ray images, with high inter and intra observer variability, and with results that do not have geometrical consistency [1]. For example, breast densities have been reported near 80%, which is highly impossible to occur, as shown in the diagram in Figure 1. Therefore, a quantitative approach is needed to reliably estimate the volumetric breast density.

PURPOSE: In this work, we propose a quantitative approach to estimate volumetric breast density, i.e. the fraction of the breast volume occupied by fibroglandular tissue. As mammograms are a simple, cheap and widely used exam, adding quantitative information will have a major impact. We designed a method to estimate volumetric breast density from mammograms, which is comparable to the measurement obtained from 3D Breast MRI.

METHODS: We used a clinical database from 11 exams, in patients with contemporaneous mammogram and breast MRI. For each technique we develop an algorithm to calculate the total breast volume and the fraction of volume occupied by fibroglandular tissue. Mammograms are a 2D representation of the breast volume, so a new patient-specific geometric model based on [2] was designed to represent the volume deformation of the breast during the acquisition. Using the volume reconstruction we adjust an x-ray decay model (Eq. 1) to estimate the volume of each group of tissue [3]. We use the raw-data mammogram data to adjust our model (Figure 2).

\[
\frac{I(r)}{I_0} = e^{-\mu_{\text{fat}} \Delta x_{\text{fat}}(r)} - \mu_{\text{gland}} \Delta x_{\text{gland}}(r) \quad (\text{Eq. 1}),
\]

where \(I(r)\) is the intensity at a position \(r\), \(x_{\text{fat}}(r)\) and \(x_{\text{gland}}(r)\) are the width of fat and glandular tissue at a position \(r\), respectively. \(I_0\) is an acquisition constant and \(\mu_{\text{fat}}\) and \(\mu_{\text{gland}}\) are decay constants.

RESULTS: As a first result, the use of raw-data mammogram images allowed to reinforce the unreliability of the current qualitative estimation of breast density. Figure 2 shows the strong difference between a raw-data mammogram images and its correspondent processed images used for diagnosis.

We tested the accuracy of our geometric model for volume reconstruction. Figure 3 shows a high correlation (\(R^2=0.986\)) and small bias between the MR gold standard and the volume predicted by our model.

CONCLUSIONS: The analysis showed that our mammogram based method to estimate the breast density volumetrically has an excellent agreement with MR quantification. The main advantage of our method is that it used a simple, cheap and widely used 2D exam, to obtain a volumetric breast tissue characterization similar to that obtained with breast MRI.