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HIGHLIGHTS 

 Compressed sensing is an exciting and rapidly growing field, attracting many attentions 

from different disciplines. 

 Compressed sensing promises to significantly reduce the MRI scan time 

 This course covers “what, why, how and where” of compressed sensing in MRI 
 

TARGET AUDIENCE  

Scientists and clinicians interested in accelerating MRI using compressed sensing 
 

OUTCOME/OBJECTIVES  

To understand 

– What is compressed sensing  

– Why we need compressed sensing in MRI 

– How compressed sensing has been used in MRI 

– Where compressed sensing goes in future 
 

PURPOSE  

Compressed sensing is concerned with recovering signals from very few measurements based on 

the sparse representations of the signals. It has rapidly grown into a field that attracts many 

attentions from different disciplines. Among these disciplines, MRI is most promising to 

translate the compressed sensing theory into practice because MRI highly demands for reduced 

acquisition time and the physics of MRI naturally meets the compressed sensing requirements. 

The research on compressed sensing for highly accelerated MRI has exploded in the past few 

years. This course will teach the basics of compressed sensing and its applications in MRI.  
 

METHODS   

Proposed by Donoho [1] and Candès et al. [2], compressed sensing started as a new 

sensing/sampling theory and has now become a research field that includes development in 

theory, algorithms, and various applications. In compressed sensing, we deal with the problem of 

recovering a signal (or image) f(x) from very few samples or measurements 

                                                             yk = < f, φk >, k = 1, …, m                                                (1) 

where <·,· > denotes the inner product and φk(x) denotes the encoding scheme. For example, in 

conventional MRI, Fourier encoding is used with φk(x) = exp(j2πkx) being the Fourier basis. 

When the measurements are far fewer than what the Shannon sampling theory requires, the 

problem of recovering f(x) from yk becomes ill-posed, suggesting there is no unique solution. 

With compressed sensing, the signal f(x) can be recovered exactly. There are three basic 

components in compressed sensing [3]:  
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(1) The signal to be recovered is sparse or sparse after certain transformations, which means 

there are very few non-zeros in the unknown signal or transformed signal, but the non-zero 

locations are not known a priori. Mathematically, the signal f(x) can be represented as: 
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where ψi(x), i = 1, …, n are basis of the sparsifying transformation such that the vector α = 

[α1, α2, …, αN]
T
 has only S(<<n) non-zero elements (called S-sparse). 

(2) The encoding scheme is incoherent with the sparsifying transformation. Mathematically, 

the coherence is defined as 
,
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      ( 1 N  ), which measures the largest 

correlation between any pair of φk(x) and ψi(x). Intuitively, incoherent measurement (μ = 1) 

suggests that the signal energy spreads out in the measurement space.  

(3) The signal is reconstructed using a nonlinear method enforcing both sparsity and data 

consistency.  

In general, fewer samples are required when the signal is sparser after transformation, the 

coherence is lower, or the reconstruction algorithm is more rigid.  

Since the MRI acquisition time is directly related to the number of samples, the application 

of compressed sensing to MRI for reduced acquisition time is of great interest. Such application 

becomes possible because MRI has the above three components of compressed sensing [4].  

(1) MR images: all MR images are 

compressible (i.e., setting all but few 

largest elements after transformations to 

zero causes negligible perceptual loss). 

Figure 1 shows how sparse a brain MR 

image could become with finite difference 

or wavelet transform.  

(2) MR encoding: the MR physics 

allows incoherent encoding of the image. 

The conventional Fourier encoding in MRI is known to have maximal incoherence with the 

identity transform and fine scale of wavelet transform [3]. To measure the coherence of a 

particular k-space sampling trajectory with respect to a particular sparsifying transform, the 

transform point spread function [4] has been used for design of the undersampling trajectory.  

(3) Reconstruction algorithm: MR images can be reconstructed within reasonable time from 

the incoherently undersampled k-space data using nonlinear reconstruction algorithms such as a 

constrained ℓ1 minimization algorithm [1,2]:  
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where Φ and Ψ have their columns from φk(x) and ψi(x) respectively. 
 

EXAMPLE  

Figure 2 shows a classical example of compressed sensing using the Shepp-Logan phantom. The 

phantom is sparse in total variation. With only 10% of the Fourier samples required by the 

Shannon sampling theory, nonlinear method can reconstruct the phantom image exactly, but the 

conventional linear method generates artifacts. 

   

Figure 1.  The brain image (left) is compressible with 

finite difference (middle) and wavelet transform (right). 
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DISCUSSION  

Some of recent developments in 

compressed sensing MRI include 

sparser representations for static (e.g., 

[5]) or dynamic MR images (e.g., [6]), 

integration with parallel imaging (e.g., 

[7, 8]), improved optimization 

algorithms (e.g. [9]), non-Fourier 

encoding (e.g., [10, 11]), 

incorporation of additional prior 

information (e.g., [12]), and various clinical applications (e.g., [13,14]). More research is still 

needed for performance characterization and evaluation in clinical applications. 
 

CONCLUSION  

Compressed sensing promises to significantly reduce the MRI scan time. However, there are still 

challenges to be addressed in translating compressed sensing into clinical practice.  
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Figure 2. The Shepp-Logan phantom can be reconstructed from 

few k-space samples (left) exactly using nonlinear method 

(middle), while the conventional linear method fails (right). 
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