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WEEKDAY EDUCATIONAL COURSE  

Everything You Wanted to Know about Magnetic Susceptibility & Why It Is Important 

 

Dmitriy A Yablonskiy, Ph.D.   YablonskiyD@wustl.edu 

How Magnetic Susceptibility Affects MR Signal Phase in Biological Tissues (Brain) 

 

What is the subject of discussion? 

Gradient Recalled Echo (GRE) based MR imaging techniques have wide applications in MRI. Due to the 
absence of refocusing RF pulses GRE sequences are fast and since low flip angles are usually applied, 
GRE sequences have low specific absorption rate, hence are particularly well suited for high field MRI. 
While MR signal generated from GRE techniques is complex, most traditional applications rely only on 
magnitude information whereas the phase information from the data is usually discarded. However, 
certain newer applications also rely on phase data. Among these, Susceptibility Weighted Imaging (SWI) 
(1,2) uses a specific algorithm based on GRE T2* weighted magnitude and phase data to create images 
sensitive to variations in tissue magnetic susceptibility resulting from sources such as venous blood, 
calcification, hemorrhage, iron stores, etc. Other techniques, some of which rely exclusively on the phase 
data of the GRE signal have also been intensely explored for uniquely characterizing anatomical 
structures that are especially evident at high field MRI (3-6), and even for creating maps of tissue 
magnetic susceptibility – the so called Quantitative Susceptibility Mapping (QSM) (7-12). Another 
technique – Gradient Echo Plural Contrast Imaging (GEPCI) (13-15) combines information from phase 
and magnitude images obtained with multi-gradient-echo sequence to generate a variety of images.  The 
information obtained from these techniques reveals image features complimentary to that obtained from 
traditional magnitude-based imaging and could improve our understanding of both normal tissue anatomy 
as well as changes in tissue in various pathological conditions. 

To appreciate the information obtained from phase images, we need to understand biophysical 
mechanisms that affect GRE signal phase. For GRE experiment with gradient echo time TE this phase is 

0( ) 2TE f TEϕ ϕ π= + ⋅ , where  f  is a local Larmor resonance frequency and 0ϕ is initial signal phase. 

The magnetic resonance frequency f  of a spin in a tissue can be described by several additive 
components:  
 0 0   ef f f f fχσ δ δ= − ⋅ + + . (1) 

(i) a component 0 0f Bγ= ⋅  is the base Larmor resonance frequency, where γ  is the gyromagnetic ratio 

(MHz/T) and B0 is the main static field, (ii) a component -σf0 is due to the local, electronic shielding 
provided by the “host” water molecule (shielding factor σ) (iii) a component efδ  is due to chemical 

exchange between free (bulk) water and bound water, typically that associated with hydrophilic groups on 
the surface (and perhaps interior) of macromolecules (6,16,17), and (iv) a component fχδ  is due to the 

magnetic susceptibility of the tissue. This last term is the subject of our discussion. 
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What is the problem? 

From the “magnetic perspective”, the main biological tissue components (proteins, lipids, iron, etc.) act as 
magnetic susceptibility inclusions in the tissue water. In an external magnetic field B0, magnetic 
susceptibility inclusions become magnetized and create their own magnetic fields. Since these induced 
magnetic fields decay relatively slow with distance, they affect (shift) not only Larmor resonance 
frequencies of neighboring water molecules but also distant neighbors. Consequently, the Larmor 
resonance frequency of a given water molecule is also affected by magnetic fields created by numerous 
susceptibility inclusions located near this molecule and far away. Calculating this frequency is usually a 
very difficult problem. 

How this problem can be addressed? 

Even though exact solution to this problem is not possible, a substantial simplification can be achieved 
using approach similar to proposed a century ago by Lorentz (18) (see also discussion in (19)).  

It is useful to start our discussion using citation from Lorentz 1909 publication: 

“If we want to know the field produced at a point A by a part of the body whose shortest distance from A is very 
great compared with the mutual distance of adjacent particles, we may replace the real state of things by one in 
which the polarized matter is homogeneously distributed.” 

“Around the particle A for which we wish to determine the action exerted on the electron it contains, we lay a closed 
surface σ, whose dimensions are infinitely small in a physical sense, and we conceive, for a moment, all other 
particles lying within this surface to be removed. The state of things is then exactly analogous to the case of magnet 
in which a cavity has been formed. There will be a distribution of electricity on the surface, due to the polarization 
of the outside portion of the body, and the force ′E , exerted by this distribution on a unit charge A must be added to 
the force E. 

Now, if the particles we have just removed are restored to their places, their electric moments will produce a third 
force ′′E  in the particle A, and total electric force to which the movable electron of A is exposed, will be   
      ′ ′′+ +E E E . 
It is clear that the result cannot depend on the form of the cavity σ, which has only been imagined for the purpose of 
performing the calculations. These take the simplest form if σ is a sphere. Then calculations of the force ′E  lead to 
the result 

 
1

3
′ =E P  

The problem of determining the force ′′E  is more difficult. I shall not dwell upon it here, and shall only say that, for 
a system of particles having a regular cubical arrangement, one finds 
 0′′ =E , 
a result that can be applied with a certain degree of approximation to isotropic bodies in general, such as glass, fluids 
and gases. It is not quite correct however for these, and ought to be replaced in general by  
 s′′ =E P , 
where, for each body, s is a constant which will be difficult exactly to determine.” 

Lorentz, The theory of electrons, 1909 (18). 

There are several points that we would like to underline from Lorentz’ consideration (note that the electric 
field E is an analog of magnetic field H): 
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1. There are no real physical empty spheres (or any other cavities) in the body under consideration – 
the surface σ surrounding point of interest A in Lorentz consideration is an imaginary surface. 
2. A commonly used assumption that the size of Lorentzian surface can be selected arbitrary small 
is not valid! The size of this surface should be much bigger “compared with the mutual distance of 
adjacent particles” (magnetic susceptibility inclusions in our case). In this case the field created by 
particles outside the surface can be calculated as a field produced by homogeneous media.  
3. The shape of the surface can be arbitrary as long as the total Lorentz field 
 L ′ ′′= +H H H  [2] 
is calculated. The result for the total LH  in Eq. [2] should not depend on this shape.  
4. Utmost important - the field ′′H  created by particles located inside the surface is generally not 
zero”! 
In the current MRI literature (e.g. (20)) it is assumed that the frequency shift fδ  due to the presence of 
magnetic susceptibility inclusions can be calculated as 

 
0

1

3

f

f

δ χ=  [3] 

where 0f  is the base frequency of the MRI scanner and χ  is a total magnetic susceptibility of the tissue. 
According to Lorentz, this can be true if: i) we would use the spherical surface σ (Lorentzian sphere, as it 
is called in the current literature) and ii) the contribution ′′H  from all the susceptibility inclusions inside 
this sphere would be zero.  

It was demonstrated in (21) that in biological tissues the magnetic susceptibility induced frequency shift 
depends not only on tissue total magnetic susceptibility χ , but also on tissue “magnetic architecture” – 
distribution of magnetic susceptibility inclusions at the cellular and sub-cellular levels. It was shown in 
(21) that the relationship in Eq. [3] is incorrect when magnetic susceptibility inclusions form longitudinal 
structures with their lengths much bigger than their transverse dimensions and average distance between 
them. Examples of longitudinal structures in the brain tissue are neurofilaments inside the axons and 
myelin layers covering the axons.  

In the original paper (21) and follow-up publications (22-24) Lorentzian principles were used to establish 
the relationship between the gradient echo MRI signal phase/frequency and underlying biological tissue 
microstructure at the cellular and sub-cellular levels. Figure 1 provides illustration of these ideas and 
methods. 

An illustration what happenings when using Lorentzian spherical surface in the case of longitudinal 
structures is shown in Fig. 1, upper row. We can see from this figure that the magnetic field created by the 
magnetostatic charges on the surface σ of the Lorentzian sphere is indeed 

 0

1 1

3 3
χ′ = = ⋅H M B  [4] 

where M is a volume magnetization, and χ  is a contribution to the volume magnetic susceptibility of the 

system from the longitudinal inclusions. However, the field ′′H  induced by the magnetic susceptibility 
inclusions remaining inside the Lorentzian sphere, is exactly opposite to ′H  in Eq. [4]: 

 0

1 1

3 3
χ′′ = − = − ⋅H M B         [5]  

because their magnetostatic charges are equal in value and opposite in sign to the magnetostatic charges 
determining the field ′H . Thus, as expected, the Lorentz field  
 0L

long ′ ′′= + =H H H  [6] 

Hence, Eq. [3] is not valid in this case.  
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Figure 1. Lorentzian magnetic field for two types of magnetic susceptibility 
inclusions: longitudinal, shown as solid rods, and isotropic, shown as solid 
spheres. In the presence of B0, the average volume magnetization of the 

tissue is 0χ=M B . The Lorentzian magnetic field LH  is a sum of the 

contributions induced by the part of the inclusions outside the surface, ′H  

(middle column), and inside the surface, ′′H  (right column): 
L ′ ′′= +H H H . Following Lorentz, the magnetization outside the surface 

is considered as homogeneous. 
Upper row: Longitudinally arrange inclusions and spherical surface. The 
radius of the sphere must be chosen much bigger than the average distance 

between the rods but much smaller than their length. The fields ′H  and ′′H  
are determined by the surface magnetostatic charges 

div /M zρ = − = −∂ ∂M  (z-axis is parallel to the external field B0), 

which exist on the cross sections of the rods and spherical surface. Their 

signs are denoted by “+” and “–“. The field ′H  is created by the surface 
charge that is negative on the upper hemisphere and positive on the lower 
hemisphere. As in the electrostatic problem considered by Lorentz, 

/ 3′ =H M . Importantly, the field ′′H  is not zero: / 3′′ = −H M  since it 

is determined by the same magnetostatic charges as ′H  but of the opposite sign. Thus, both the fields ′H  and ′′H  are non-zero 

but compensate each other, and 0L =H . Middle row: Longitudinally arrange inclusions and cylindrical surface. In this case, 

no magnetostatic charges are induced and both the fields ′H  and ′′H  are equal to zero. Hence, 0L =H  automatically, 
emphasizing the convenience of selecting Lorentzian cylinder for this case (21). Lower row: Spherical uniformly distributed 

inclusions and spherical surface. The field / 3′ =H M  as the magnetization outside the cavity is considered as homogeneously 

distributed. In contrast to the longitudinally arrange inclusions, the field 0′′ =H  due to the uniform distribution of the 
inclusions and the fact that an average magnetic field around magnetized spherical particle is zero (this result is also confirmed 

by computer simulations in (22)). Thus, the Lorentzian field LH  is equal to / 3L =H M . 

  
As was proposed in (21), for longitudinal structures, a natural choice of Lorentzian surface is a cylinder 
encompassing them, as shown in Fig. 1, middle row. In this case, no structures cross Lorentzian surface, 
no magnetostatic charges exist and both the fields ( ′H and ′′H ) are automatically zero: 
 0, 0, 0L

long′ ′′= = =H H H  [7] 

The situation is different in case of isotropically distributed magnetic susceptibility inclusions of the 
spherical shape. This is illustrated in Fig. 1, lower row. A natural choice of Lorentzian surface is now 
sphere; the field ′H  is given by Eq. [4], the field ′′H  is now zero, hence: 

 0

1 1

3 3
L
iso χ′= = = ⋅H H M B  [8] 

In the general case when we have both sphere-like and longitudinal magnetic susceptibility inclusions 
with external magnetic field B0 forming an angle α with the axis of longitudinal structures, our theory, 
that we call Generalized Lorentzian Approach (GLA) (21), suggests that the frequency shift due to the 
Lorentzian field is: 

 2

0

1 1
sin

3 2i long

GLA

f

f

δ χ χ α= + ⋅  [9] 

where iχ  is a contribution to the tissue volume magnetic susceptibility from uniformly distributed 

spherical-like (isotropic) objects and longχ  is a contribution from the longitudinal structures. The 

coefficients 1/3 and 1/2 in Eq. [9] result from demagnetizing factors of sphere and cylinder, 
correspondingly (25). Hence, for cylindrical structures, the Lorentzian field contribution to the frequency 
shift is the same as if water molecules would be residing in a hollow cylinder with magnetic susceptibility 

longχ , Eq. [9], second term, and for randomly distributed spheres – the result is the same as if water 
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molecules would be residing inside a hollow sphere with magnetic susceptibility iχ , Eq. [9], first term. 
The “imaginary hollow space” appears because in both cases an average magnetic field around either 3D 
(point) dipole or 2D (line) dipole is zero (21). 
 
While GLA has already predicted anisotropic behavior of GRE signal phase (21), it was suggested later 
(26,27) that the magnetic susceptibility of myelin can be anisotropic. This effect can also be incorporated 
in the GLA. By making a reasonable assumption that the anisotropic magnetic susceptibility can be 
attributed to longitudinal structures and can be characterized by two components – axial, ||χ , and radial, 

χ⊥ , we arrive to the following modification of Eq. [9]:  

 0 0

1 1 ˆ
3 2GLA iχ= ⋅ + Λ ⋅H B B  [10] 

where tensor Λ̂  has only two non-zero components, xx yy χ⊥Λ = Λ =  in the system of coordinates where 

Z-axis is parallel to the direction of longitudinal structures. At the same time, the tissue magnetization is 
defined as  
 0 0ˆ

i longχ χ= ⋅ + ⋅M B B  [11] 

where the magnetic susceptibility tensor ˆ
longχ  has three components ( , ,long xx long yyχ χ χ⊥= = , , ||long zzχ χ= ) 

in the same system of coordinates. The set of equations [10] and [11] is different from proposed in (26). 
In our approach, only transverse components of magnetic susceptibility tensor contribute to Lorentzian 
field in Eq. [10] (longitudinal components are “invisible”), while all the components contribute to the 
tissue magnetization in Eq. [11].  

It can be shown that for a system comprising multiple types of susceptibility inclusions with volume 

fractions nλ  and described by the demagnetizing tensors ˆ
nN  and magnetic susceptibility tensors ˆ

nχ , 
respectively, the general expression for the Lorentzian field is a sum over all components: 

 0
ˆ ˆ ˆ ˆ,GLA n n n n n

n

λ χ= ⋅ ⋅ = ⋅∑H Λ B Λ N  [12] 

All the above consideration is based on the assumption that tissue can be considered in the framework of 
a single component model with impermeable magnetic susceptibility inclusions. More sophisticated 
analytical (24,28) and numerical (29) multi-component models of brain tissue have recently been 
developed. In a linear approximation, their results can be reduced to the equations described above with 
all the coefficients treated as apparent.  

Conclusion: The consideration above explains the ideas and the results of GLA that are based on the 
principles formulated by Lorentz (18). They are in agreement with an exact theoretical consideration (13), 
they are backed up by computer simulations in (22) and have been experimentally validated in a carefully 
designed experiment with the optic nerve (23). Recall, that there are no actual spheres or ellipsoids in the 
biological tissue. The surfaces proposed by Lorentz are imaginary and only needed to calculate fields 
created by numerous susceptibility inclusions by separating contribution from near environment and the 
remote sources. Since the total field at any point is a sum of the fields created by all the susceptibility 
inclusions, it is natural to calculate the part of the field created by sphere-like inclusions using Lorentzian 
sphere, and the part of the field created by longitudinal structures – using Lorentzian cylinder. The 
relationship between the gradient echo MR signal phase and underlying tissue magnetic susceptibility can 
only be described in terms of Lorentzian sphere for randomly distributed sphere-like susceptibility 
inclusions. In the brain where long cells (axons, etc.) are present, the GLA is the essential tool that 
connects MR signal phase with the underlying tissue microstructure (magnetic architecture). 
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