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Diffusion weighted MRI (DWI) has become instrumental in noninvasive characterizations of Central-Nervous-
System (CNS) tissues in vivo™?. By monitoring micron-scale spin displacements arising from Brownian motions,
DWI provides access to dimensions much smaller than the imaging voxel size. The ensuing diffusion-driven
contrasts have been harnessed, inter alia, for early diagnosis of ischemia®*; for monitoring various CNS
pathologies’; for studying CNS development® and plasticity’; and, more recently, even for tracking neural activity
in vivo®’.

It has been long recognized that DWI contrasts vary strongly with the direction of the applied diffusion-
sensitizing gradients in white matter (WM)'®™. It has been since shown that this diffusion anisotropy can be

used to map the orientations of WM fibers in vivo and noninvasively'>*?

. To date, the most widely employed
model for mapping orientations is the diffusion tensor, which assumes that: (1) a single water reservoir is being
interrogated in each voxel; (2) the microstructures comprising the WM fiber are coherently aligned; (3) the
fiber’s overall structure can be modeled by a single “ellipsoid” conveying the underlying anisotropy and the
fiber’s respective orientation. To fully characterize the diffusion tensor, several non-collinear measurements
using low diffusion weightings are required; the ensuing apparent diffusion coefficients are then transformed to
the fiber’s principal axis system, from which the rotationally invariant metrics can be extracted****.

Although highly successful and widely employed, Diffusion Tensor Imaging (DTI) does not take into account
the richness of CNS microstructures vis-a-vis their underlying topologies; in some voxels — in particular in those
containing crossing fibers and/or other forms of orientational dispersion — the diffusion tensor no long provides
an accurate description of the structural morphology. This, in turn, can significantly impact fiber tracking
procedures®. On the other hand, more elaborate modeling of CNS tissues — and the design of more elaborate
methods and acquisition schemes that facilitate the estimation of these higher-order models — could account for
some of the CNS’s structural diversity, and provide more accurate information on the tissue’s microstructure™.

The aims of this lecture are therefore (i) to explore more advanced diffusion models addressing the
possibility of structural heterogeneity still at the low diffusion weighting regime; (ii) to explore higher order
diffusion models that require stronger diffusion weighting; (iii) to survey novel diffusion MRl methods departing

from the dogma of a single pair of diffusion-sensitizing gradients, and explore their added value in terms of

microstructural characterization.
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In the first part of the lecture, we shall describe models such as multi-tensor’’” and Ball & Stick®® and their

potential benefits for fiber tracking’. We shall then touch upon High Angular Resolution Diffusion Imaging

(HARDI) models such as and Persistent-Angular-Structure (PAS)* and QBALL?® MRI, and further discuss

measurements of the 3-dimensional propagator via Diffusion Spectrum Imaging (DSI)*. In the final part of the

lecture, we shall discuss Oscillating-Gradient Spin-Echo (OGSE) approaches? for enhancing diffusion MRI’s

sensitivity towards smaller, more biologically relevant length scales, as well as double-Pulsed-Field-Gradient

(dPFG) MRI**?* for probing highly disordered systems.
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