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1 Introduction 
MRI of articular cartilage is becoming an increasingly useful tool for the assessment and 
monitoring of articular cartilage injury and degeneration. It is an excellent non-invasive 
research instrument and there is considerable potential for expansion of the role of MRI in 
clinical applications, especially for very high fields and the use of dedicated sequences. MRI 
techniques have been well described to evaluate morphologically articular cartilage and 
allow visualization of the cartilage surface, as well as its internal structure, thickness, volume 
and the adjacent subchondral region. In addition, several new techniques and the use of 
very high fields allow detection of biochemical changes that precede the morphological 
degeneration in cartilage. 
 
 
2 MR techniques to asses biochemical properties of cartilage 
The delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) technique is based on the 
fact that GAG contains negatively charged side chains which lead to an inverse 
proportionality in the distribution of the negatively charged contrast agent molecules with 
respect to the concentration of GAG. Consequently, T1 which is determined by the Gd-
DTPA2- concentration becomes a specific measure of tissue GAG concentration. The value of 
this technique and the possible clinical application has been repeatedly reported (1-6). 
Drawbacks of this technique are the necessity of a double dose of MR contrast agent which 
is now under critical review since systemic nephrogenic fibrosis was reported as a possible 
complication of standard MR contrast agents (7). Furthermore the delay between i.v. 
contrast administration and MR examination, necessary for full penetration of cartilage by 
the contrast agent, and the relatively time-consuming T1 mapping techniques (despite new 
developments which help to reduce scan time) complicate the examination procedure, 
lowers the patient compliance and is therefore less attractive for clinical application. 
Relaxation time in the rotating frame (T1ρ) has been reported to be a sensitive marker for 
the loss of proteoglycans in articular cartilage (8-10). T1ρ is a time constant that 
characterizes magnetic relaxation of spins under the influence of a radiofrequency field that 
is parallel to the spin magnetization. The resulting contrast is sensitive to the low frequency 
interactions between water molecules and their local macromolecular environment, such as 
GAG and collagen, which are the main constituents of the extracellular matrix in cartilage. 
Changes of T1ρ were observed in cartilage plugs chemically or enzymatically depleted of GAG 
but not in collagenase-treated tissue (11,12). In addition, it was reported that the dominant 
T1ρ and T2 relaxation mechanism at B0 < 3T is dipolar interaction due to slow anisotropic 
motion of the water molecules in the collagen matrix. 
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Diffusion Weighted Imaging (DWI) is based on molecular motion that is influenced by intra 
and extra-cellular barriers. Consequently, it is possible to estimate biochemical structure and 
architecture of the tissue by measuring molecular movement (13,14). When based on spin-
echo (SE) sequences, DWI is relatively insensitive to susceptibility effects, but diffusion 
weighted SE sequences require acquisition times that cannot be readily applied in clinical 
practice, and are very sensitive to bulk motion. Echo planar imaging (EPI)-based diffusion 
sequences are the current gold standard of DWI in neurological applications, but these suffer 
from image distortions (susceptibility artifacts) and from limitations in contrast and 
resolution (due to the long echo times required). Both renders them impracticable for 
imaging tissues with short T2, such as cartilage and muscles. Alternatively, diffusion imaging 
can be performed using steady state free precession sequences (SSFP) which provide 
diffusion weighting at relatively short echo times (15). This is achieved by the application of a 
mono-polar diffusion sensitizing gradient, which leads to a diffusion weighting of 
consecutive echoes (spin echoes, stimulated echoes and higher order echoes) under steady-
state conditions. For the assessment of diffusion weighted images in articular cartilage, a 
three-dimensional steady state diffusion technique, called PSIF has been used.  In order to 
assess diffusional behaviour of the cartilage semiquantitatively, the diffusion sequence 
protocol should consist of two immediately consecutive measurements with zero (0), and 
75 mT*ms*m-1 monopolar diffusion gradient moments for DWI, but identical imaging 
parameters. For evaluation, the quotient image (non-diffusion weighted / diffusion-weighted 
image) is calculated on a pixel-by-pixel basis. The feasibility of diffusion-weighted PSIF 
imaging after matrix-associated chondrocyte transplantation was demonstrated in vivo (16). 
The drawback of this technique is the semiquantitative character, since the b-values and 
diffusion weighting depend on several tissue and scanner parameters.  
Sodium (23Na) MR imaging has been described as a new technique for cartilage imaging (17, 
18). According to the similar principle as described for dGEMRIC imaging, positive sodium 
ions are attracted by the negative fixed charged density (FCD) of the side chains of GAG. 
These electrostatic forces are responsible for a direct relationship between the local sodium 
concentration and FCD, and research has shown sodium imaging to be sensitive to small 
changes in GAG concentration (19, 20). The MR sensitivity for 23Na is only 9.2% of the 1H MR 
sensitivity, and the in vivo concentration is ~360 times lower than the in vivo water proton 
concentration. The combination of these factors results in a 23Na signal which is 
approximately 4000 times smaller than the 1H signal. In addition, the very short T2 relaxation 
time of 23Na leads to a further reduction in signal intensity. 
Recent advances in magnet technology, improved gradient performance, multi coil RF 
technology (parallel receive as well as transmit) may make sodium MRI clinically feasible on 
high fields systems.  There is strong evidence that an ultra-high field 7T-MRI system will 
further improve sensitivity, specificity, and spatial and temporal resolution.   
Although sodium MRI has high specificity and does not require any exogenous contrast 
agent, it does require special hardware capabilities (multinuclear), specialized RF coils 
(transmit/receive) and likely 3D-ultra short TE sequences.  
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Chemical Exchange Saturation Transfer (CEST) imaging  
Balaban and his colleagues were the first to demonstrate that chemical exchange between 
labile protons of low concentration solutes and bulk water protons provides a sensitivity 
enhancement scheme known as CEST (21, 22). After this initial work on small solutes, Zhou 
et. al. showed that endogenous mobile proteins and peptides at very low concentration in 
biological tissue could also be detected via the bulk water signal  (23). When saturation is 
applied at a particular frequency far from the water resonance, this saturation is transferred 
rapidly between solid-like matrix (rigid collagen) and free bulk water. Therefore, two 
possible molecular mechanisms are responsible for MT. The first pathway is through-space 
dipolar coupling from: 1) protons of the immobilized macromolecular phase, 2) protons of 
hydration water on the macromolecular surface, and 3) protons of the unbound bulk water.  
The second pathway is through the protons of some side groups (e.g –NH, -NH2, -OH etc), 
which mix with water protons via fast chemical exchange. Interestingly, both proteoglycans 
and collagen macromolecules have exchangeable amide protons (~100mM) that exchange 
with bulk water. In addition, each proteoglycans unit also has three -OH protons (~300mM) 
that rapidly exchange with bulk water. Similarly, collagen has exchangeable amine protons (-
NH2).  Recently Ling et. al. extensively studied and identified the potential metabolites in the 
cartilage via 1H and 13C one and two dimensional NMR spectroscopy as well as CEST methods 
(24). Furthermore, feasibility of the CEST method was also demonstrated in model systems, 
bovine cartilage and an in vivo human volunteer on a 3T clinical scanner (25) and 7T scanner 
(26).  
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