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Angiogenesis or the de novo formation of blood vessels is one of the ‘hallmarks’ of cancer and a 
key prerequisite for tumor progression and metastasis (Hanahan et al. 2011).  The healthy body controls 
angiogenesis through a balance of ‘on’ and ‘off’ switches known as angiogenesis stimulating growth 
factors (e.g. vascular endothelial growth factor or VEGF) and angiogenesis inhibitors (e.g. 
thrombospondin-1), respectively (Bergers et al. 2003).  However in cancer, the body loses control of this 
homeostatic balance, resulting in the excessive growth of tumor blood vessels that are structurally and 
functionally distinct from the vasculature of healthy tissue (Carmeliet et al. 2000; Jain et al. 2001).   

Tumor-induced blood vessels are typically sinusoidal, exhibit discontinuous basement 
membranes, and lack tight endothelial cell junctions making them highly permeable to macromolecules 
(Konerding et al. 1995; Nagy et al. 2010).  Other characteristics include spatial heterogeneity, loss of 
branching hierarchy, arterio-venous shunts, acutely and transiently collapsing vessels, a dearth of 
smooth muscle cell lining, and an inability to match the elevated metabolic demand of cancer cells, 
resulting in areas of hypoxia and necrosis (Semenza 2003).  Pioneering work by Jain, Vaupel and others 
has demonstrated that these morphological anomalies profoundly alter tumor hemodynamics, blood 
rheology, and perfusion (Jain 1988; Vaupel et al. 2007). 

These observations led Folkman to hypothesize that inhibiting tumor growth with specialized 
‘antiangiogenesis’ drugs could profoundly affect the quality of life of cancer patients (Folkman 1971).  
Over the past several years, a large number of angiogenesis inhibitors have been identified and are 
currently in clinical trials (Folkman 2007).  Most of these inhibitors achieve their effects by inhibiting 
VEGF (Ferrara 2002).  Recently, it was shown that antiangiogenic therapies can transiently ‘normalize’ 
the chaotic tumor vasculature (Jain 2001; Jain 2005), improve tumor blood flow and enhance delivery 
and efficacy of anti-cancer drugs (Batchelor et al. 2007; Batchelor et al. 2013).  While VEGF inhibition has 
been shown to be effective in multiple cancers, response in metastatic cancer has been limited, with the 
disease eventually progressing (Ebos et al. 2011).  This has been attributed to the rapid development of 
resistance to VEGF targeting drugs (Sennino et al. 2012).  Preclinical studies have demonstrated that 
tumors respond to VEGF inhibition with a loss of blood vessels (i.e. vascular pruning), which decreases 
perfusion and elevates hypoxia, inducing mechanisms of evasive resistance to antiangiogenic therapy 
that include revascularization via alternative proangiogenic pathways (Bergers et al. 2008), increased 
invasiveness and enhanced metastasis (Ebos et al. 2011). 

With these developments in the field of angiogenesis has come a crucial need for reliable 
biomarkers to: (i) test novel antiangiogenic drugs; (ii) assess their therapeutic efficacy in vivo; (iii) 
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provide early measurable signs of tumor relapse/recurrence; (iv) stratify patients according to their 
angiogenic/tumor phenotype; (v) identify the best combinatory drug regime (i.e. antiangiogenic drug 
plus chemo- or radio-therapy); and (vi) repeatedly monitor patients with maximal safety (Pathak et al. 
2008). 

A wide array of non-invasive imaging modalities have been used to image the tumor 
vasculature.  These include x-ray computed tomography (CT), magnetic resonance imaging (MRI), 
positron emission tomography (PET), single-photon emission computed tomography (SPECT), 
ultrasound, and different types of optical imaging, each with its own distinct advantages as a tool in the 
non-invasive, in vivo assessment of tumor angiogenesis (McDonald et al. 2003).  However, the 
assortment of available ‘functional’ contrast mechanisms in conjunction with the development of novel 
imaging probes, has made MRI invaluable for the functional and molecular imaging of tumor vasculature 
(Pathak et al. 2010).  This includes probing tumor vasculature using the endogenous contrast produced 
by paramagnetic deoxyhemoglobin in tumor microvessels or the blood oxygenation level dependent 
(BOLD) contrast mechanism (Ben Bashat et al. 2012; Boult et al. 2013), and imaging tumor perfusion 
with arterial spin labeling (ASL), in which the intrinsic magnetization of arterial blood water serves as the 
endogenous tracer (Silva et al. 2000).  Exogenous low and high molecular weight gadolinium (Gd)-based 
complexes, as well as para- and superparamagnetic contrast agents have been used in pre-clinical and 
clinical studies of tumor angiogenesis (Pathak et al. 2004).  The MR pulse sequences used to characterize 
tumor vascularization depend on the physical properties and pharmacokinetics of the contrast agent 
used, following which a range of tumor vascular parameters (e.g. blood volume, blood flow, vascular 
permeability, microvessel density and radius etc.) can be calculated from tracer kinetic principles and 
MR biophysical principles (Zaharchuk 2007; Pathak 2009).   

The recent development of novel contrast agents directed to cell-surface receptors expressed 
on tumor endothelial cells using peptides, ligands or antibodies has made feasible ‘molecular’ imaging of 
tumor angiogenesis with MRI (Pathak et al. 2010).  Additionally, multi-modal probes that can be used in 
combination with two or more imaging modalities are also being developed.  For example, high-
resolution SPECT-CT/MRI of angiogenesis in a tumor model was recently reported using probes that 
consisted of αvβ3-targeted 99mTc nanoparticles (Lijowski et al. 2009).  It is worth mentioning that new 
preclinical MR imaging methods in conjunction with computational models of angiogenesis are helping 
us gain a deeper understanding of the cellular and molecular regulation of tumor angiogenesis (Kim et 
al. 2012).  For example, 3D mapping of murine neurovasculature using high-resolution magnetic 
resonance microscopy (μMRI) has been combined with diffusion tensor imaging (DTI) to examine the 
interplay between the brain tumor vasculature and white matter reorganization as well as phenotype 
the brain tumor microenvironment (Kim et al. 2011; Pathak et al. 2011).  Incorporation of high-
resolution 3D tumor vascular imaging data facilitates development and validation of predictive, 
multiscale computational models of tumor angiogenesis (Stamatelos et al. 2013) and more realistic 
biophysical models for validating MRI-based angiogenesis biomarkers (Pathak et al. 2008).  

MRI is continuing to evolve as an important modality for the molecular-functional 
characterization of tumor vasculature.  As new contrast mechanisms and imaging methods are 
developed, these will facilitate and usher in the era of ‘personalized’ cancer therapy.   
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