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HIGHLIGHTS 

• The Bloch Equations can be rewritten into the rotating frame, making it much easier to visualize 
the effects of applied rotating magnetic field used for excitation. 

• The small tip angle approximation is very useful for understanding slice profile and 
multidimensional excitation. 

• Excitation k-space, similar to k-space for image acquisition, is a concept that can be used to 
design complicated patterns of excitation. 

• There are some nuances and interesting extensions when designing RF pulses for large tip angle 
(> 90 degrees) excitation. 

  
TALK TITLE:  Bloch Equation in the Rotating Frame, Excitation and Multidimensional Excitation 
 
TARGET AUDIENCE: Graduate students and recent Ph.D.’s in engineering and natural science and 
MR physicists with an interest in designing pulse sequences including excitation pulses 
 
OUTCOMES/OBJECTIVES: Students should gain a better understanding of Bloch equations as they relate to 
excitation and learn general principles and approaches for design of one-dimensional and 
multidimensional excitation RF pulses. 
 
PURPOSE: The main purpose of the presentation is to provide a better understanding of the 
behavior of magnetization under applied magnetic fields, such as RF pulses and gradient fields.  With the 
mathematical foundation provided by the Bloch equations, one can approach the problem of how to 
design one- and multiple dimensional, spatially- and spectrally-selective RF pulses for many applications. 
 
THEORY AND METHODS 
 
The Bloch Equations 
The Bloch equations govern the behavior of the net magnetization in the presence of applied magnetic 
fields.  The Bloch equations provide the “classical” description of motion of the magnetization vector 
and does not easily account for some quantum mechanical behavior seen in, for example, coupled spin 
systems.  While simple concepts such as on-resonant energy absorption can help to explain the 
excitation of a plane of on-resonance spins in slice selection and more detailed analysis is necessary for 
describing the slice profile and multidimensional excitation. 

 
We start with the Bloch equations, neglecting relaxation: 

BMM γ×=
dt

d
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where M = [mx my mz]’ and B = [Bx By Bz]’.  This vector equation, while complicated, merely dictates 
that the magnetization M will precess around any B field at frequency ω = γB. 

Rotating Frame of Reference 
One of the more useful tools in simplifying MRI concepts is the rotating frame of reference.  Here we 
consider that our coordinate system for observation of the magnetization is rotating at a frequency, 
ω0 = γB0.  In particular, the coordinate system is rotating about the z-axis in the same direction that M 
rotates about B.  The z coordinate does not change, but we now must define a new x and y coordinate 
system.  The “laboratory” frame of reference is the usual frame of reference with coordinates (x, y, z). 
The “rotating” frame of reference has coordinates (x’, y’, z).  If we have magnetization precessing at ω0, 
it will appear to be stationary in the rotating frame. 
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If one has magnetization precessing in the transverse plane, 𝑚𝑥𝑦 = 𝑚𝑥 + 𝑖𝑚𝑦 = 𝑚0exp (−𝑖𝜔0𝑡), it will 
appear stationary in the rotating frame: 𝑚𝑥𝑦,𝑟𝑜𝑡 = 𝑚𝑥,𝑟𝑜𝑡 + 𝑖𝑚𝑦,𝑟𝑜𝑡 = 𝑚0.  Conceptually, we can think 
of this as being similar to riding on a carousel.  If we are on the carousel, other objects on the carousel 
appear stationary, but to someone on the ground, the objects are spinning by at ωcarousel (ω0).  The z-
component of the magnetization is the same in both frames of reference: 𝑚𝑧,𝑟𝑜𝑡 = 𝑚𝑧. 

In the rotating frame of references, the magnetization is not precessing.  Thus, the apparent or effective 
B in the rotating frame is Beff = 0.  More generally, the rotating frame has an effective z magnetic field 
that is B0 less than the applied magnetic field: 𝐵𝑧,𝑒𝑓𝑓 = 𝐵𝑧 − 𝐵0.  Most generally, if we assume that the 
rotating frame is at ωframe, we can relate the rotating and lab frame magnetization and applied fields are:  

𝑚𝑥𝑦 = 𝑚𝑥𝑦,𝑟𝑜𝑡exp (−𝑖𝜔frame𝑡), 𝑚𝑧,𝑟𝑜𝑡 = 𝑚𝑧 
𝐵𝑥𝑦 = 𝐵𝑥𝑦,𝑒𝑓𝑓exp (−𝑖𝜔frame𝑡), 𝐵𝑧,𝑒𝑓𝑓 = 𝐵𝑧 − 𝜔frame/𝛾,  

along with the Bloch equation in the rotating frame: 

effrot
rot

dt
d BMM γ×= . 

For signal reception, it is interesting to note that the receiver allows you to see magnetization in the 
rotating frame defined by the frequency of the receive demodulator and thus, we can define the MRI 
signal equation using 𝑚𝑥𝑦,𝑟𝑜𝑡. 
 

Recall, we said that the Bloch equation, which describes the motion of M in the presence of a B field, 
dictates that the magnetization will precess around the B field at frequency γB.  Here, we have two 

Excitation 
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applied field, B0 and B1, and determining the motion of M in this case can be quite tricky with the Bloch 
equations.  But fortunately, we have a tool to make this analysis easier: the rotating frame.   

 
Let’s consider the magnetization starting in its equilibrium position aligned to B0 (z axis).  RF excitation 
(B1) that is applied at ω0 in the lab frame will appear as a stationary B1,eff is aligned to the x’ axis in the 
rotating frame.  In the rotating frame, B0 disappears and one only has to consider B1 and we see that 
Meff will precess around x’ B1 at frequency ω1 = γB1: 
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The most common excitation pulse used in MRI is the slice selective RF pulse, which is done by applying 
an frequency selective RF pulse in the presence of a slice selection gradient (commonly z-gradient).  
Here the resonance frequency varies in the z-direction and the bandpass RF pulse excites only those 
spins whose resonant frequency lies within the band.  We will examine the Bloch equations for this 
specific case.  We will let B1(t) be a time-varying, real-valued magnetic field rotating at ω0.  For this 
analysis, we’ll let the rotating frame be at ωframe  = ω0.   

Slice Selective Excitation 
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where i, j, and k are unit vectors in the x, y, and z directions.  A z-gradient is applied, so the component 
in the z-direction is: 
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and the net effective applied field is: 
kiB )(')(1 zGtB zeff ⋅+=  

The Bloch equation in the rotating frame for this case reduces to the following: 

roteffrot
rot MBMM
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What we would like to know is how the magnetization, Mrot, varies as a function of z position following 
the application of the specified B1 field.  This is, in general, a very difficult equation to solve because it is 
non-linear. 
 

One particularly useful approach to the solution to the above Bloch equation is to use the “small tip 
angle approximation.”  Here, we assume the B1 produces a small net rotation angle, say,  

Small Tip Angle Approximation 
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In this case, we can assume the z component of the magnetization, mz, is approximately equal to m0 
during the RF pulse.  Essentially, we are saying that: 
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Under this assumption (dmz/dt = 0 and mz(t) = m0), the Bloch equation is then: 
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We now would like to solve for mxy,rot(z,t) = mx,rot(z,t) + i my,rot(z,t).  We can then write a differential 
equation using for the transverse component: 
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Observe that iγGzz is a constant with respect to time and thus we have a first order differential equation 
with a driving function iγB1(t)m0.  For initial condition, mxy,rot(z,t) = 0, the solution to this differential 
equation at the end of the RF pulse (T) can be shown be: 

∫−=
T

z
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We now make a variable substitution, 2/Ts −= ξ .  We can also assume that the RF pulse that is 
symmetrical (even) around Τ/2 and that it is zero outside of the interval [0,T].  The magnetization can 
now be described as: 
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which is the well know Fourier relationship between the RF pulse (B1(t)) and the slice profile.  The 
leading phase term must be compensated for by using a rephaser gradient after the RF pulse. 
 

We can construct a more general case where the applied gradient fields are along multiple directions 
and possibly time-varying, [𝐆(𝑡) ∙ 𝐱], and the applied RF fields can be complex.  Here the small tip 
approximation is: 

Multidimensional Excitation and Excitation k-space 
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Following Pauly [Pauly 1989a], we define 𝐵1(𝑡) = 𝐵1,𝑥 + 𝑖𝐵1,𝑦, and the above equation simplifies to: 

[ ] 01,
, )()( mtBimti

dt
dm

rotxy
rotxy γγ +⋅−= xG  

which, for an initial condition with m0 aligned the B0, has a solution: 
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In a manner similar to image k-space, we can define excitation k-space [ref] as: 

𝐤(𝑡) = −γ� 𝐆(s)ds
T

t
 

and then 

[ ]( )∫ ⋅=
T

rotxy dttitBmiTm
0
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Note that excitation k-space is a time reversed integral of the gradient waveforms, and this forms the 
pathway upon which the RF energy is deposited in k-space by B1(t).  Note also that since k-space is a 
time-varying function, there is also in implicit weighting by the inverse of the velocity of through 
excitation k-space – a slow pathway deposits more B1 than a fast pathway.  Thus, the resultant 
excitation pattern as two components: 1) a k-space sampling pattern and 2) the excitation weighting 
defined by the RF waveform (B1(t)) as modified the k-space velocity.  More specifically, the sampling 
term is defined as 𝑆(𝐤) = ∫ δ(𝐤(t) − 𝐤)��̇�(t)�3 dt𝑇

0 , where the δ3  is a delta function in 3D that defines 
the k-space path.  The RF weighting term is defined as 𝑊�𝐤(𝑡)� = 𝐵1(𝑡)/|𝛾𝐆(𝑡)|, which is defined only 
on the k-space pathway.  We can then recast the excitation pattern (shown in the previous equation in a 
time integral) in the k-domain as: 

[ ]( )∫ ⋅=
k

kkxkkx diSWmiTm rotxy exp)()(),( 0, γ . 

Thus, for a fully sampled, non-crossing excitation k-trajectory (e.g. an Archimedean spiral) and a desired 
excitation pattern, 𝑑(𝐱), one can define the RF waveform as: 

𝐵1(𝑡) = �𝐹{𝑑(𝐱)}|𝐤=𝐤(𝑡) ∙ |𝛾𝐆(𝑡)|. 
Below we demonstrate the design of an RF waveform for a spiral excitation k-space trajectory with a 
Gaussian 2D target profile and the resultant small-tip excitation pattern. 
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The above approach provides an analytical expression for multidimensional RF pulses for a particular k-
trajectory and desired pattern, however, this approach has some limitations with respect to the kinds of 
trajectories that can be easily employed, accounting for magnetic field inhomogeneity, enforcing power 
constraints, or exploiting spatially limited objects.  Here, we describe an iterative pulse design approach 
developed by Yip et al. [Yip 2005], which is based on a discretization of the above time domain integral: 

Iterative Methods for Multidimensional RF Pulse Design 
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which can be rewritten as a simple matrix equation: 
𝐦 = 𝐀𝐛 

where m is the resultant magnetization, b is the RF pulse, and A is a system matrix with elements: 
( ) ttimia jiij ∆⋅= )]([exp0 kxγ  

where xi are voxel locations in the object.  Including the magnetic field inhomogeneity ∆ω(x) yields: 
( ) tTtitimia jijiij ∆−∆+⋅= ))(()]([exp0 xkx ωγ . 

Using this formalism, we can easily design an RF pulse as a statistical estimation (minimization) problem: 

�̂� = argmin
𝐛 �‖𝐀𝐛 − 𝐝‖𝐖2 + β𝑅(𝐛)�. 

where d is the desired spatial excitation pattern and 𝑅(∙) is a regularization term that can penalize, for 
example, the sum of the squared RF pulse, which is related to power deposition (SAR).  With this form, 
constraints can be incorporated to limit the peak RF power.  The first term in the argument is a W-
weighted 2-norm, where the weighting function can be used to ignore voxels with no spins or “don’t 
care” regions.  The formalism can handle arbitrary excitation k-trajectories, including variable density 
and crossing trajectories. 
 

We have thus far described multidimensional excitation as 2 or 3 spatial dimensions and that the 
frequency spectrum is a nuisance term in the form of magnetic field inhomogeneity.  However, as 
described in Meyer et al. [Meyer 1990], one can explicitly consider the spectral frequency dimension as 
a dimension which we want to control.  In the approach, we can define the k-space or Fourier domain 
equivalent of the spectrum as a simple function of time: 𝑘𝜔 = 𝑡 −  𝑇.  The pulse design then proceeds 
using either direct (with some modification to the k-velocity term) or iterative approaches and the 
desired pattern (d) is specified in both spatial (x) and frequency (ω) domains.  Note that the spectral k-
domain (𝑘𝜔) is somewhat constrained in that it can only move in the positive direction at a constant 
velocity and that it can only occupy the negative part of the domain unless spin echo pulses are used.  
This makes the control of the spectral dimension not quite as robust as the spatial dimension. 

Frequency Spectrum as Another Dimension 

 

All of the above 1D and multidimensional RF pulse design approaches are based on the small tip angle 
approximation, but the design of large tip-angle pulses is more complicated.  There are many 
approaches for the design of 1D RF pulses for large tip angles, e.g. for slice selective inversions or spin-
echo pulses.  One of the more commonly used approaches is the so-call Shinnar-LeRoux algorithm 
popularized by Pauly et al. [Pauly 1991].  For the design of large-tip angle, multidimensional pulses, 
Pauly also described an approach that can be used for a series of self-refocused k-trajectories [Pauly 
1989b].  A variety of other approaches have been developed to handle the large-tip angle case for 
multidimensional excitation [Pruessmann 2000, Xu 2007, Xu 2008, Sesompop 2008, Grissom 2008, 

Large Tip Angle Extensions 
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Grissom 2009], which include methods for incremental correction to small-tip designs and full non-linear 
design approaches.   
 
SUMMARY: In the above sections, we described the Bloch equations in the rotating frame and how 
this simplifies analysis of excitation pulses.  We then describe a very powerful approximation – the small 
tip angle approximation, which allows the use of a Fourier interpretation.  Extended to the multiple 
spatial dimensions, the Fourier interpretation leads to the concept of excitation k-space and to direct 
and iterative RF pulse design approaches.  With this mathematical foundation, one can design one- and 
multiple dimensional, spatially- and spectrally-selective RF pulses for many applications. 
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