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Abstract 

A growing number of methodological and clinical reports refer to explorations into the assessment 

and reproducibility of myocardial perfusion using cardiac magnetic resonance (CMR) [1-3]. Realizing 

the progress, promise and challenges of perfusion weighted CMR this presentation outlines current 

trends in enabling MR technology tailored for probing myocardial perfusion. For this purpose the 

basic imaging concepts of first-pass contrast agent bolus perfusion techniques will be outlined. The 

remaining obstacles to an even broader clinical acceptance of conventional first-pass perfusion will be 

discussed. Here the focus will be on (i) the limited anatomic coverage achievable while accomplishing 

one- or two-heart-beat temporal resolution to track the contrast agent passage and on (ii) the limited 

in-plane spatial resolution commonly used in today’s clinical CMR practice which increases the 

propensity to Gibbs ringing artifacts [4]. Simply speaking, Gibbs ringing artifacts are due to signal 

truncation and manifest themselves as signal intensity ripples parallel to the blood/myocardium 

interface and hence might mimic subendocardial perfusion deficits. Gibbs ringing artifacts vanish with 

increasing matrix size, which would also help to improve the spatial resolution. To reach the goal of 

(sub)millimeter in-plane spatial resolution, while preserving single-heart-beat temporal resolution, 

the baseline SNR advantage of high-field imaging can be exploited together with the traits of parallel 

imaging [5]. Substantial signal-to-noise ratio, contrast-to-noise ratio and overall image quality 

improvements, as compared to the 1.5 T approach, were noted for first-pass perfusion imaging at 3.0 

Tesla [6,7]. In the meantime clinical studies demonstrated that accelerated perfusion weighted 

imaging yielded image quality superior to that of the conventional approach, primarily as a result of 

enhanced spatial resolution and the substantial suppression of Gibbs ringing artifacts [8,9]. The ability 

to produce exquisite in-plane spatial resolution may offer greater diagnostic value for myocardial 

perfusion assessment and supports an extension of the perfusion assessment to the right ventricle. 

With sufficient acceleration and imaging speed, perfusion imaging is on the verge for 3D acquisitions 

that afford whole heart coverage in the single breath-hold [10,11]. With this in mind early 

applications of 3D perfusion weighted imaging and their clinical implications for explorations into 

cardiovascular diseases are explored [12]. A concluding section ventures a glance beyond the horizon 

and explores future directions including massively accelerated perfusion imaging. In this context it is 

also conceptually attractive to develop alternatives for the assessment of myocardial perfusion using 

blood as an endogenous marker which can be exploited for myocardial blood oxygenation level 

dependent [13-15] or for arterial spin labeling based perfusion imaging [16]. The goal here is not to be 

comprehensive but to inspire the biomedical and diagnostic imaging communities to throw further 
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weight behind the solution of the many remaining unsolved problems and technical obstacles of 

perfusion CMR with the goal to transfer MR physics driven methodological advancements into extra 

clinical value. 
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