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Introduction

MRI is an unusual medical imaging modal-
ity in that the raw data used to form an im-
age can be collected in an infinite number of
ways. While conventional Cartesian k-space
scanning is by far the most common scan-
ning method, non-Cartesian approaches have
shown promise for rapid imaging, motion ro-
bustness, ultrashort TE imaging, rapid spec-
troscopic imaging, and other applications. A
key component of implementing any non-
Cartesian scanning technique is of course a
method for reconstructing an image from ar-
bitrary k-space positions. This lecture will
cover fast methods for non-Cartesian image
reconstruction.

It is straightforward to reconstruct data
from arbitrary k-space samples using a tech-
nique known as conjugate phase reconstruc-
tion (CPR) [1, 2]. CPR is performed by mul-
tiplying each k-space point by the conjugate
of the k-space encoding exponential and by a
density compensation factor and then sum-
ming all of the data to arrive at a recon-
structed pixel. However, this process must
be repeated for each reconstructed pixel, and
thus CPR is very slow. There have been a
variety of methods published for fast non-
Cartesian image reconstruction. Here we
will focus on a technique known as gridding,
which is fast, simple and widely used [3–7].
Other methods have advantages in certain sit-
uations.

The basic idea of gridding is simply to dis-

tribute the data from a non-Cartesian k-space
trajectory onto a rectilinear grid, which is then
be followed by an inverse fast Fourier trans-
form (FFT) to transform to image space. The
distribution is performed using a convolu-
tion operation, which can be thought of as an
interpolation. The speed of gridding varies
depending upon the details of the particular
implementation, but roughly speaking about
half of the reconstruction time is taken up
by the FFT, so a simple non-Cartesian recon-
struction takes about twice as long as a con-
ventional Cartesian reconstruction.

Gridding consists of the following steps:

1. Estimate the k-space trajectory.

2. Multiply the raw data by a density com-
pensation function (DCF).

3. Convolve the data into a rectilinear array.

4. Perform an inverse FFT.

5. Multiply by an image deapodization
function that compensates for the effect
of the convolution.

The following sections describe some practi-
cal considerations for each of these steps.

Trajectory Estimation

The k-space trajectory is of course a required
input to any non-Cartesian image reconstruc-
tion method, including gridding. The theo-
retical trajectory is known by the pulse pro-
grammer, but the actual trajectory that is pro-
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duced in the scanner differs from the theo-
retical trajectory because of a variety of fac-
tors, including eddy currents, filter-induced
delays, main field inhomogeneity, suscepti-
bility and concomitant gradients. Using an in-
correct k-space trajectory can result in signif-
icant image artifacts. Thus, it is essential to
either measure the trajectory [8–11] or to use
some form of k-space model [12,13]. At a min-
imum, the bulk gradient delay should be mea-
sured relative to the theoretical trajectory.

Density Compensation

Conventional Cartesian k-space trajectories
typically have uniform density, so each k-
space point is either weighted equally or
weighted with a k-space windowing function
to minimize sidelobes of the point spread
function (PSF). Non-Cartesian trajectories,
however, often have nonuniform k-space
density, and thus weighting each data point
equally in the reconstruction will lead to an
inaccurate reconstruction. This nonuniform
k-space density can result both from vary-
ing distances between neighboring portions
of the trajectory and from varying velocities
along the trajectory, corresponding to varying
gradient magnitude during the scan. It is im-
portant to compensate for non-uniform den-
sity to get an accurate reconstruction using
CPR or gridding. (Some other non-Cartesian
reconstruction methods do not require a den-
sity compensation step.)

At first glance, it would seem to be pos-
sible to compensate for the varying k-space
density after convolving the data samples into
the grid. It is straightforward to keep track of
how much k-space “energy” is deposited in
each grid point and then divide by this en-
ergy after completing the convolution. This
method is referred to a post-compensation,
and it can be used when the density varies
slowly in space, as compared to the width of
the convolution kernel. However, this step

interferes with the image deapodization step
and does not work well for many common k-
space trajectories (e.g., spiral). Thus, it is best
to perform the density compensation prior to
the convolution, when it is simply a point-by-
point weighting of the raw data by the DCF,
which is designed to be the inverse of the local
k-space density.

There are a variety of ways to calculate the
DCF. For many trajectories, straightforward
geometric arguments can be used to calculate
the DCF. For radial scans, the problem is well-
known from computed tomography and the
DCF is the so-called rho filter, which is pro-
portional to the distance from the center of
k-space multiplied by the normalized gradi-
ent magnitude (if it varies during the scan).
For undersampled radial scans, it may be ad-
vantageous to roll off the rho filter in the un-
dersampled region, thus effectively apodizing
k-space and reducing the aliased energy [14].
For constant-density (i.e., Archimedean) spi-
ral scans, there are also simple DCF expres-
sions [5, 15, 16]. These can be adapted to ac-
count for warping of k-space caused by inho-
mogeneity [17].

For more general trajectories, it may not be
possible to generate a theoretical DCF, and
thus numerical methods are necessary. For
scans that have a monotonically increasing
radius in k-space, including variable-density
spiral scans, a simple method based on the
differential area of the annulus corresponding
to a particular data sample often works well
[18]. A general method based on calculating
the Voronoi diagram of the sample distribu-
tion works well for a wide variety of trajecto-
ries [19]. Similarly, iterative numerical meth-
ods work well for arbitrary trajectories [20,21].
One advantage of a DCF calculation method
that works for any trajectory is that the actual
trajectory including distortions can be used in
the calculation.
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Convolution and Inverse FFT

The steps of convolving onto the uniform grid
and transforming into image space are re-
lated, so they are presented together here. The
core idea of gridding is that the nonuniformly
spaced k-space samples are convolved with a
kernel that is a finite approximation to a sinc
function, so that in image space the object is
multiplied by a rect function approximately
the width of the desired field-of-view (FOV).
The result of this convolution only needs to
to be evaluated at the rectilinear grid points.
The data samples can be modeled as weighted
delta functions, so the result of convolution
with a continuous kernel function is a replica
of the function at the sample point, weighted
by the product of the signal amplitude and
the DCF. Thus, one can think of the continu-
ous result of the convolution as being a series
of “tents”, with the weighted signal amplitude
corresponding to the height of the tent pole.
Each of these k-space tents can then be eval-
uated at each grid point that falls within the
finite extent of the tent, and the height of the
tent at that point is then added to the resulting
grid point.

The choice of kernel is one important pa-
rameter. One common choice is a Kaiser-
Bessel function, which is an excellent approx-
imation to the ideal prolate spheroidal wave
function. Typically, a separable Kaiser-Bessel
kernel is used, which leads to faster image
reconstruction and makes sense for a square
or rectangular FOV. Note that even with a
Kaiser-Bessel kernel of optimal width, there
will still be aliased energy at the edges of im-
age space, because the finite extent of k-space
sampling implies that the corresponding ob-
ject is infinite in extent. This infinite object is
then replicated by the uniform sampling cor-
responding to the FFT, and thus the sidelobes
of the object overlap with the image FOV. The
multiplication of the object by the transform
of the gridding kernel mostly removes this ef-

fect, but if no room is left for a transition
band, there will still be some aliasing result-
ing from the gridding reconstruction. Often
this is acceptable, because the aliased energy
will be mostly confined to the edges of the im-
age, which may not matter for certain appli-
cations. However, for a more accurate recon-
struction, it is better to do k-space oversam-
pling.

The idea behind k-space oversampling is to
use a k-space grid that is spaced more closely
than would be required for a Cartesian im-
age reconstruction. The result is to move
the replications of the object in image space
farther apart, and thus to allow for a transi-
tion band for the transform of the convolu-
tion kernel. The resulting extra FOV can then
be discarded, similar to the phase oversam-
pling technique often used in Cartesian im-
age reconstruction. Beatty et al. have an ex-
cellent discussion of the computational and
image accuracy tradeoffs involved in k-space
oversampling [7]. The authors describe how
the width of the Kaiser-Bessel kernel should
be designed in concert with the k-space over-
sampling factor. An oversampling ratio of
about 1.25 leads to improved image quality
and a rapid image reconstruction. It is not
always true that smaller oversampling ratios
lead to faster image reconstructions, though,
because the computation time of modern
FFT algorithms (e.g., FFTW) is not monotonic
with the size of the transform.

Typically, the convolution kernel is precal-
culated and stored in an array, which requires
less computation. Linear interpolation be-
tween these samples allows fewer kernel sam-
ples to be used than are necessary with near-
est neighbor interpolation for a given recon-
struction accuracy [7].

Deapodization

The final step in a gridding image reconstruc-
tion is to remove the effect of the k-space con-
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volution on the image. This effect is simply
a weighting or apodization of the image by
the transform of the gridding kernel. Thus,
the center of the image of a uniform phantom
will appear brighter than the edges. Because
the analytical inverse Fourier transform of the
Kaiser-Bessel kernel is known, it is a simple
matter to multiply the image on a point-by-
point basis by the reciprocal of this transform.
The kernel should be designed so that the first
zero of its transform is outside the image FOV,
so that the reciprocal is defined throughout
the FOV.

Summary

Gridding is a simple and rapid image recon-
struction method for non-Cartesian k-space
trajectories. The principal error introduced by
gridding is a small amount of added aliasing
energy at the edges of the image. With proper
choice of parameters, it is straightforward to
reduce this error to below the level of the
noise in the image. Typically, the dominant
sources of image artifacts in a non-Cartesian
scan are from inaccuracies in the k-space tra-
jectory estimation or from other nonideali-
ties, especially B0 inhomogeneity. An accu-
rate non-Cartesian reconstruction will usually
also include B0 inhomogeneity compensation
[22–25].
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