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PURPOSE 

 Phase and magnetic susceptibility maps derived from gradient-echo MRI provides a 
unique contrast among various cortical and sub-cortical gray and white matter tissues (1-9). The 
excellent tissue contrast has been largely attributed to the sensitivity of magnetic susceptibility 
to the spatial variations of molecular or cellular components, especially iron and myelin that are 
of different magnetic properties compared to bulk water (3,8,10-15). The objectives of the 
lecture are to understand the underlying concepts of QSM; to explain the basic acquisition and 
processing protocols of QSM; to recognize the benefits and pitfalls of QSM in CNS applications. 

METHODS  

Overview 

 Magnetic susceptibility is a physical property that reflects how a substance changes the 
magnetic field. Magnetic susceptibility of a material, noted by χ, is equal to the ratio of the 
magnetization M within the material to the applied magnetic field strength H, i.e. χ = M/H. This 
definition of susceptibility is in fact the volume susceptibility or bulk susceptibility. In MRI images, 
it is the volume susceptibility involving the magnetism (a dipole moment) per voxel. Magnetic 
materials are classically 
classified as diamagnetic, 
paramagnetic, or 
ferromagnetic on the basis of 
their susceptibilities. Biological 
tissues can be either 
diamagnetic or paramagnetic 
depending on its molecular 
contents and microstructure. 
 Susceptibility is usually 
measured with gradient-echo 
sequences. In GRE images, 
variations of tissue magnetic susceptibility result in signal cancellation in the magnitude and 
frequency shift in the phase. While magnitude images are routinely used in MRI, phase images 
are typically severely corrupted by phase wraps and overwhelmed by non-tissue-specific 
background phases. Quantifying tissue magnetic susceptibility from these phase images 
involves three basic steps (Fig. 1): 1. 3D phase unwrapping, 2. separating background and 
tissue phase, 3. solving an ill-posed deconvolution problem. These processes can be 
accomplished in freely available software such as STI Suite (16).   

 
Fig. 1. Basic steps involved in quantitative susceptibility
mapping (QSM) 
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Sequences for acquiring phase images 

 The most commonly used sequence for measuring phase and susceptibility is the spoiled-
gradient-recalled-echo (SPGR or GRE) sequence. The phase of GRE images gives a measure 
of local frequency offset which in turn can be used to calculate susceptibility quantitatively. The 
magnitude of a series of multi-echo GRE images is used to estimate the T2* relaxation time 
using a single exponential or multi-exponential fitting. The flip angle, TE and TR can be 
optimized to improve SNR (17). Higher readout bandwidth can be used to reduce artifacts and 
T2* decay induced blurring. 

Processing phase images 

 Two key steps are typically required in order to visualize tissue susceptibility contrast and 
for susceptibility quantification: phase unwrapping and background phase removal. Several 
methods have become readily available and have so far served the need for susceptibility 
mapping. These methods include, for example, path-based method and Laplacian based 
method (1). Once the phase is unwrapped, underlying tissue contrast is usually covered by 
large background phases that are generated from sources outside the brain. These large 
background phases can be removed with several methods, e.g, the spherical-mean-value 
based filtering (SHARP) (18), dipole field fitting (PDF) (19) and integrated HARPERELLA (16). 

Susceptibility quantification 

 Quantitative susceptibility values can be calculated from background-phase removed 
frequency shift maps by solving a linear equation. The relationship between frequency shift f(r) 
and the spatially distributed susceptibility χ(r) is expressed in a Fourier transform as  
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Here χ(k) is the 3D Fourier transform of χ(r) and k is the spatial frequency vector. The equation 
can be inverted in the k-space. However, when 2 23 zk k= , the coefficient is zero prohibiting a 

direct inversion. Several viable solutions have been proposed. A simple strategy makes a 
threshold of the coefficients by replacing them with a small number whenever they are below 
that value. Other strategies utilize, e.g., regularization (6-7), multiple angle acquisition (4), LSQR 
algorithm (1) and compressed sensing (20). 

RESULTS  

 Magnetic susceptibility of tissue has recently been shown to reflect organ’s molecular 
composition, structure, function and disease state. For example, phase contrast has revealed 
unprecedented spatial details of brain anatomy in vivo (2-3,21). QSM is enabling noninvasive 
and in vivo measurements of oxygen saturation and iron deposition in stroke, multiple sclerosis, 
Parkinson’s and Alzheimer’s diseases, and other neurological disorders and diseases (18,21-
46). Further, QSM offers a new contrast mechanism for studying properties of nerve bundles 
including myelination and fiber tract orientation (15,39,47-56). 

Quantification of iron concentration 

Gradient echo signal phase was increasingly applied to assess iron contents in deep brain 
nuclei. QSM showed great promise for assessment of deep brain nuclei, e.g. it can reliably 
differentiate sunthalamus nuclei from the adjacent substantia nigra (57). Recently, emerging 
evidence suggests susceptibility is also linearly correlated with iron content in the basal ganglia 
nuclei (58-60). Both R2* and susceptibility are related to microscopic magnetic field perturbation. 
While R2* reflects the spectral width of field inhomogeneity, susceptibility is derived from the 
mean field shift. The good linearity between susceptibility and R2* and the similar temporal 
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parameters suggest that magnetic susceptibility may be potentially used as a biomarker of brain 
iron deposits in gray matter. With standard multi-echo gradient-echo sequences, R2* and 
susceptibility can be measured simultaneously without scan time penalty.  

Quantification of demyelination and dysmyelination 

 Recent studies have established that magnetic susceptibility of brain white matter is 
closely related to myelin content. Liu et al reported that the loss of myelin sheath around axons 
in a transgenic dysmyelinating shiverer mice led to almost complete loss of phase and 
susceptibility contrasts between gray and white matter (15). These results suggest that myelin is 
the predominant source of susceptibility difference between deep gray and white matter. Lee et 
al also showed that frequency contrast are substantially reduced in mice with significant myelin 
loss induced by a cuprizone diet (52). Together, these studies indicated the potential value of 
QSM for the study of myelination in the white matter.  

QSM of brain development and aging 

 Myelination and iron deposition in the brain evolve spatially and temporally. This evolution 
reflects an important characteristic of normal brain development and ageing. Li et al assessed 
the changes of regional susceptibility in the human brain in vivo by examining the 
developmental and ageing process from 1 to 83 years of age (61). The evolution of magnetic 
susceptibility over the lifespan was found to display differential trajectories between the gray 
and the white matter. In both cortical and subcortical white matter, an initial decrease followed 
by a subsequent increase of magnetic susceptibility was observed, which could be fitted by a 
Poisson curve. In the gray matter, including the cortical gray matter and the iron-rich deep nuclei, 
magnetic susceptibility displays a monotonic increase, which can be described with an 
exponential growth. The rate of change varies according to functional and anatomical regions of 
the brain. In another study, Argyridis et al assessed QSM and susceptibility anisotropy changes 
in mouse brains (62).  

Imaging white matter microstructure and connectivity 

  Magnetic susceptibility of white matter is also anisotropic (8,63). To measure the 
anisotropy of magnetic susceptibility, the method of susceptibility tensor imaging (STI) has been 
used (8). A recent study also explored the capability of STI for tracking neuronal fibers in 3D in 
the mouse brain ex vivo (64). In large fiber bundles, the orientation determined by STI was 
found to be comparable to that by diffusion tensor imaging (DTI) of diffusion anisotropy. A 
recent study suggested that the susceptibility anisotropy in brain tissue mainly originates from 
myelin, and the cylindrically aligned lipid molecules in myelin are likely the main source of the 
MRI-determined susceptibility anisotropy (65). 
 However, this experimental procedure of STI requires rotating the object or the magnetic 
field. A p-space method was recently developed to measure higher-order frequency variations 
based on a single image acquisition without rotating the object or the magnet (48). This method 
utilized a multipole analysis of the MRI signal in a sub-voxel Fourier spectral space termed “p-
space” for short. By sampling the p-space with pulsed field gradients or by shifted image 
reconstruction, a set of dipole and quadrupole susceptibility tensors can be measured. This p-
space approach may provide a powerful method for studying tissue microstructure and brain 
connectivity in vivo and non-invasively. 

DISCUSSION 

 QSM is a deconvolution tool for analyzing MRI phase allowing the study of tissue magnetic 
susceptibilities (66-67) and their relations with organ structures, functions and diseases. QSM 
has shown a wide range of scientific and clinical applications (1,4,8-9,15,17,46,68-82). QSM is 
enabling quantitative functional connectivity and biophysical studies in neuroimaging, providing 
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an important tool for neuroscience and neuroengineering. Understanding, diagnosing, and 
treating neurological disorders can benefit from QSM measurements of white matter tracts and 
iron deposition. In the clinics, QSM can be applied for risk assessment and therapy monitoring 
by measuring iron deposition, demyelination, and connectivity disruption in neurodegenerative 
diseases, including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis; measuring 
oxygen level in ischemic stroke patients; measuring microbleeds in traumatic brain injury and in 
patients at risk of hemorrhages; differentiating calcification from iron deposition; and 
characterizing atherosclerotic plaque.  
 While QSM has shown to be valuable in a wide range of applications, it will benefit from 
further technical refinement. Existing methods need to be evaluated systematically under a 
variety of experimental conditions and quantitative susceptibility values need to achieve high 
degrees of consistency. The lack of an absolute measure of susceptibility may be a fundamental 
shortfall of these techniques that may ultimately limit the utility of susceptibility mapping if not 
addressed properly. 
 Quantifying magnetic susceptibility is also complicated by the existence of multiple sources 
to the frequency contrast. Some sources may not even be related to susceptibility. For example, 
both chemical shift and proton exchange affect the measured frequency. Partial volume effect 
and tissue compartmentalization may also render Eq. [1] inaccurate and incorrect. These 
confounding factors may make it difficult to interpret the physical and biological meanings of the 
“quantitative” susceptibility maps. 

CONCLUSION: QSM has been quickly established as a high-resolution and quantitative 
imaging technique for the CNS. Image acquisition for QSM is relatively simple and is compatible 
with all modern MRI scanners. QSM algorithms are becoming increasingly mature. QSM is 
poised to become an important tool for studying the CNS.  
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