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Highlights  

• Scan time is a limiting factor for translation of advanced diffusion weighted magnetic 
resonance imaging (DW-MRI) to clinical practice. Moreover, physical constraints limit 
the total time that DW-MRI can be acquired for pre-clinical or phantom studies. 

• Compressed sensing (CS) is a signal processing perspective that can be applied to 
circumvent Nyquist criteria and dramatically accelerate DW-MRI acquisitions.  

• We will discuss the fundamentals of CS and how CS can be used to reveal complex 
diffusion-inferred tissue models with limited k-space data and/or with limited diffusion 
sensitization.  

TALK TITLE:  

Compressed Sensing for Fast Acquisition 

TARGET AUDIENCE  

• This presentation targets scientists and researchers who are familiar with basic magnetic 
resonance imaging (MRI) acquisitions and the contrasts derived from DW-MRI. 

OUTCOME/OBJECTIVES  

As a result of attending this presentation, participants should be able to: 
• Understand the fundamentals of CS theory in relation to Nyquist criteria and the classical 

spin-echo approach for DW-MRI.  
• Discuss strategies for using CS to accelerate DW-MRI acquisition (i.e., while acquiring 

standard practices for diffusion sensitization of MRI). 
• Discuss approaches for CS of diffusion-derived tissues models (i.e., estimating motion 

probability propagators from limited diffusion sensitizations).  
• Compare advantages and limitations of using CS to accelerate acquisition of DW-MRI.  

PURPOSE  

Diffusion contrasts imbue MRI with exquisite sensitivity to tissue microarchitecture[1], 
but specificity in the context of complex tissue architecture has been elusive[2]. High-resolution 
acquisitions reduce the impacts partial voluming and offer the potential to image more 
homogeneous local environments [3-8], but increasing resolution traditional necessitates 
increased data acquisition time. Alternatively, moving beyond a typical tensor representation to 
more complex tissue models at the individual voxel level [9-15] has the potential to resolve long-
standing concerns over “cross-fibers” [16, 17]. Yet, complex models required more detailed 
characterization of changes in MRI signal contrast with changes in applied diffusion weighting; 
hence, more data are needed.  

Since Richard Ernst’s NMR Fourier Zeugmatography[18], the fundamental constraints on 
rapid imaging have been (1) achieving sufficient signal-to-noise ratio for each observed Fourier 
coefficient and (2) acquiring sufficient Fourier space (k-space) such that Nyquist criteria are 
satisfied for the reconstruction physical resolution. Simply put, under the Nyquist criteria, the 
number required observations scales with the product of the voxel dimensions and linearly with 
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the number of independent volumes. With both high-resolution diffusion imaging and complex 
diffusion models, the length of time required is prohibitive for routines clinical applications (i.e., 
constraints of less than 30 mins to 1 hour of total scan time) and borderline infeasible/impractical 
for research studies (e.g., due to scanner drift, physiological motion). CS is a signal processing 
perspective that offers the potential to circumvent Nyquist criteria [19-21].  We will review the 
fundamental of how CS can be applied to MRI acquisition [22] and how CS can be used to reveal 
complex diffusion-inferred tissue models with limited data.  

METHODS / RESULTS 

In 2006, Candes et al and Donoho introduced CS to the information theory community, 
and CS approaches were rapidly translated to a diverse array of signal processing and sensing 
application from signal pixel image[23] to MRI[22], as reviewed in a 2008 IEEE Spectrum 
special issue[24]. The key idea in CS is that data can be represented in two basis sets (with low 
coherence), one during sensing and another during reconstruction. When the signals under 
consideration can be sparsely represented in the reconstruction basis, one recover the signal from 
sparse (and noisy) observations taken with the sensing basis. Random sampling has attractive 
statistical properties, but randomization is not required. CS efforts in the MRI community 
followed Lustig’s work in which Fourier space (k-space) was sparsely sampled in space and time 
(for dynamic sequences) while sparsifying transform were developed to increase sparsing in the 
reconstruction basis, e.g., [25-27].   

It was quickly realized that the process of computing diffusion-inferred tissue models 
(e.g., tensors[1], spherical harmonics[14], tensor mixtures[28, 29], fiber orientation 
distributions[30, 31], etc.) was a sensing process in itself. Using CS theory, it is not strictly 
necessary to regularly sample the space of diffusion sensitization parameters in order to recover 
these models. In 2008, we presented the first, simple approach using CS to recover multiple 
tensors from traditional diffusion tensor imaging data (which are sparsely sampled relative to 
modern high angular resolution sequences)[32]. These approaches have been generalized [33-35] 
and extended to encompass a broad range of possible diffusion models from diffusion spectrum 
imaging [36-39], orientation diffusion functions (ODF) [40, 41], ensemble average propagators 
(EAP) [42], and multi-shell propagators [43].   

DISCUSSION  

Under specific conditions (incoherent sensing and reconstruction basis), CS offers exact 
reconstruction with the number of samples proportional to the number of parameters required to 
represent the object (i.e., “sparsity”). From a practical perspective, CS is a special case of 
regularized regression and is commonly implemented using a fast L1-L2 numerical optimizers.  
Contrary to some expectations, CS is not a magical spell that offers perfect reconstruction with 
negligible data. Rather, it is a principled approach for projecting limited information into a 
defined space. CS grew out of regularized regression and dictionary bases. These approaches 
have been (and continue to be) applied outside of the CS context for learning for regularizing 
deconvolution of orientation diffusion functions into fiber orientations [14, 28, 30, 31].  

CONCLUSION 

CS enables rapid MRI sequences where the amount acquired information scales with the 
complexity of the image as opposed to the Fourier resolution of the reconstructed image. Real-
time and on-scanner CS reconstruction are emerging capabilities[44] and will likely be widely 
adopted for non-diffusion sequences (e.g., vascular imaging) when the target image is known to 
sparse in a simple transform of the voxel-domain. Meanwhile, CS of the motion probability 
propagators is undergoing rapid innovation and expansion in a manner that has paralleled 
development of models of intra-voxel structure [40, 45-50]. Direct sensing of intra-voxel 
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structure has enabled reasonable estimation of crossing fiber structure using traditional DTI 
acquisitions (which are feasible for clinical imaging, e.g. our work[32-35]). Improvements in CS 
reconstruction and empirical optimality criteria are promising to improve both approaches to 
advanced diffusion weighted imaging.  

Fundamental challenges remain in understanding and interpreting CS acquired images 
because well-accepted measures of image quality (i.e., signal-to-noise, contrast, resolution) are 
not necessarily constant for all possible target images. For example, it is straightforward to create 
a straw-man CS sequences such that a set of healthy brains is reconstructed with near perfect 
accuracy where as a brain with a tumor would be constructed as normal. Therefore, particular 
care must be exercised in determining the domain of target images for a CS method is designed 
and these assumptions should be carefully validated.  
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