

Lecture Outline:

- Provide a clinical overview of stroke:
 - Risk
 - Prevention
 - Diagnosis
 - Intervention
- Illustrate how MRI is used in the diagnosis and management of stroke.
- Illustrate how competing modalities are used in the diagnosis and management of stroke.

Stroke Cerebrovascular Accident (CVA)

Sudden diminution or loss of consciousness, sensation, and voluntary motion caused by rupture or obstruction of a blood vessel of the brain.

Stroke Risk

Controllable Risk Factors High BP, A. Fib, High Cholesterol, DM, Smoking, ETOH, Physical Inactivity, Obesity

Uncontrollable Risk Factors Age, Gender, Race, Family Hx, TIA's or Prior Stroke, FMD, R to L shunt

Stroke Prevention

- Imaging work-up of vascular stenosis
 Clinical Signs & Symptoms
 - Vascular Screening (advancing age + risk factors)
 - vascular Screening (auvancing age + risk factors)
- Pharmacologic and Surgical Prevention
 - BP, Statins, Anti-platelets
 - Endovascular (Angioplasty vs. Stent)Surgical (Endarterectomy vs. Bypass)

Pathophysiology of Stroke

Artery rupture- hypertensive hemorrhage Arterial stenosis/Systemic hypoperfusion

Arterial occlusion

- ≻ Embolic
 - ♦ Cardiac
 - Atrial fibrillation
 - Right to left shunt- patent foramen ovale
 - \diamond Carotid
- Thrombotic (large vs. small vessel)

Venous occlusion-hemorrhagic

Hypertensive Hemorrhage

10-20% of Stroke >50,000/yr in U.S. GM nuclei, Pons

Hypoperfusion Stroke

Vascular territoryproximal large vessel stenosis results in the inability for the brain to autoregulate flow in the setting of hypotension.

Global (severe systemic hypotension)

Artery Occlusion- Thrombotic

60% of Stroke 300,000/yr in U.S. Vascular territory

Artery Occlusion- Embolic

25% of Stroke 125,000/yr in U.S. Vascular territory

Venous Occlusion Stroke

50-100x less common than arterial stroke

Edema typically involving the underlying WM
Enhancement / Hemorrhage BBB breakdown secondary to elevated venous pressure

Imaging for Stroke Prevention

% Stenosis = $(1 - (\frac{\text{Minimal lumen diameter}}{\text{Distal lumen diameter}})) \times 100\%$

North American Symptomatic Carotid Endarterectomy Trial (NASCET) Barnett HJ, Taylor DW, Eliasziw M et al. *NEJM* **339** (20): 1415–1425, 1998.

> European Asymptomatic Carotid Surgery Trial (EACST)

≥70% carotid stenosis if the surgery can be performed with ≤3% risk of perioperative complications Consensus statement by the American Academy of Neurology & the American Board of Internal Medicine February 2013

Surgery vs. Stent

The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST)

Mantese VA, Timaran CH, Chiu D, Begg RJ, Brott TG, & CREST Investigators. Stroke, 2010 Oct;41(10 Suppl):S31-4.

 \uparrow 'd risk of stroke with CAS & \uparrow 'd risk of MI with CEA

The Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy (SAPPHIRE) Trial

Gurm HS, Yadav JS, Fayad P, & SAPPHIRE Investigators. N Engl J Med 2008; 358:1572-1579.

No long term outcome difference for high risk patients

Vascular Assessment

- Conventional Angiography
- CT Angiography (CTA)
- MR Angiography (PC, TOF, Bolus)
- Doppler/US

Anatomic Vascular Assessment

- Conventional Angiography
- CT Angiography (CTA)
- MR Angiography (PC, TOF, Bolus)
- Doppler/US

Physiologic Vascular Assessment

- Conventional Angiography
- CT Angiography (CTA)
- MR Angiography (PC, TOF, Bolus)
- Doppler/US

Vascular Assessment- DSA

Anatomic & Physiologic Test

Advantages

Superior spatial resolution Superior temporal resolution Anatomic and Physiologic

Disadvantages

- Stroke risk Cost
- Requires contrast
- Ionizing radiation

Vascular Assessment- CTA

Anatomic Test

Advantages

Intermediate spatial resolution Fast and readily available

Disadvantages

Purely anatomic Ionizing radiation Requires contrast Temporal resolution Obscured by calcium

Vascular Assessment- MRA

Physiologic & Anatomic Test

Advantages

Physiologic test No ionizing radiation Not obscured by calcium

Disadvantages

Poor temporal resolution Turbulent flow Less available

2D vs. 3D	O TOF N	MRA Tr	adeoffs
	2D	3D	MOTSA
Flow related enhacement	+++		++
Intravoxel Dephasing	-	++	++
Resolution		+++	+++

Imaging Recommendations for Acute Stroke and Transient Ischemic Attack Patients

A Joint Statement by the ASNR, ACR, SNIS

Wintermark M, et. al. AJNR 43:E117-E127, Nov. 2013

CT vs. MRI

Dx of ischemic stroke in the emergency setting: CT scan (*non*-contrast) sensitivity= 16% specificity= 96% MRI scan sensitivity= 83% specificity= 98%

Dx of hemorrhagic stroke in ED setting: CT scan (non-contrast) sensitivity= 89% specificity= 100% MRI scan sensitivity= 81% specificity= 100%

The Lancet, Vol.369, Issue 9558, Pages 293 - 298, 27 January 2007

Ste Is Intracranial her Yes- Supportive ca	e p 1: morrhage present? are No- Step 2		
CT- tPA package insert	MRI- Equivalent/Superior		
Schellinger PD, et. al. <i>Stroke. 1999; 30: 765-768</i> Kidwell CS, et. al. JAMA. 2004 Oct 20;292(15):1823-30.			

Step 2: Candidate for IV tPA? < 4.5 hours since onset of symptoms				
Yes- IV tPA	No- Step 3			
Step 3: Is endovascular Rx Considered? < 8 hours since onset of symptoms				
Yes- Stat imaging NCCT + DSA NCCT + CTA + CTP MRI + MRA + PWI/ASL	No- Supportive care MRI + MRA NCCT + CTA NCCT + DUS			

