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Highlights: 

● Noise calibration (noise pre-whitening) and SNR scaled reconstruction. 
● Non-Cartesian Parallel MRI. 
● Regularization in Parallel MRI. 

 
TARGET AUDIENCE: Anybody with an interest in Parallel Imaging (PI) beyond theoretical 
principles and who would like the tools to implement practical, production-level parallel imaging 
reconstruction algorithms. 
 
OBJECTIVES: This course aims to describe the effects of colored noise in the parallel MRI [1–
3] experiment and how to perform a reconstruction, which takes the noise distribution into 
consideration. Techniques for SNR scaled reconstruction [4] are described for Cartesian and 
non-Cartesian imaging. The course will also describe iterative reconstruction algorithms and 
their regularized forms. Software for all the described reconstruction processes will also be 
introduced. 
 
PURPOSE: MRI experiments are affected by noise. When a parallel imaging experiment is 
performed, this noise may be unevenly distributed in the receive channels, e.g. some receive 
channels may have higher noise levels than others. Furthermore, the noise may be correlated 
between then channels. If left uncorrected, this can lead to a reduction in image quality (poor 
SNR). If the noise is pre-whitened, it is possible to maintain unit noise scaling throughout the 
reconstruction. By doing so, an image can be reconstructed in units of SNR making it easy and 
intuitive to compare reconstructions. In some reconstructions, such as iterative reconstructions, 
the SNR reconstruction is not obtained as easily, but we will discuss how one can still obtain 
images in SNR units using the pseudo-replica (a Monte Carlo simulation) approach. Finally, we 
will demonstrate how iterative reconstruction can be used to reconstruct data acquired on 
arbitrary trajectories and we will demonstrate various techniques for performing such 
reconstructions (including practical software implementations). 
 
METHODS: All MRI experiments collect both signals and some measurement noise: 
ܛ  = ۳ૉ + િ (1) 
 
Where ܛ is a vector with the measured signal, ૉ is the imaged object, ۳ is the encoding matrix 
describing the transformation from image space to measured k-space (multiplication with coil 
sensitivities, FFT to k-space and sampling) and િ  is the measured noise. The noise is 
uncorrelated and uniformly distributed between k-space locations, but there may be noise level 
differences between the individual receive channels and the noise may also be correlated 
between channels. We describe this using the noise covariance matrix, which should be the 
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same for all locations in k-space. The noise covariance matrix is an NxN matrix where N is the 
number of coils, and the ࢏, ࢐ entry is defined as: 
 શ࢐,࢏ =< િ࢏, ࢐۶ࣁ > (2) 

 
Where < િ࢏, ࢐۶ࣁ >denotes expected value of the product of the noise in channel i and the 

complex conjugate of the noise in channel j. If the noise were white and uncorrelated between 
channels, this matrix would be the identity matrix. In practical experiments this matrix is not 
identity. As we will demonstrate in this lecture, it can be instructive to inspect this matrix to gain 
insight into any problems with the receive chain (e.g. broken pre-amplifiers and coil elements). 
Most reconstructions provide SNR optimal reconstruction results only when the noise is white. 
To achieve this, we perform a noise pre-whitening step, which creates a set of virtual receive 
channels where the noise is white, i.e. for a specific location in k-space we obtain the noise pre-
whitened signal ࢝࢖ܛ as: 

࢝࢖ܛ  =  ૚࢙ (3)ିۺ

Where  ۺۺୌ = શ (4) 
 
To perform this procedure, it is necessary to have a set of noise measurements. These noise 
measurements can (and should) be acquired with every MRI experiments even when parallel 
imaging is not performed.  
 
Once the data has been noise pre-whitened, it is advantageous to maintain noise scaling 
throughout the reconstruction. This is done by making sure that every signal processing step is 
scaled such that ો࢔࢏ = ો࢚࢛࢕, i.e. the noise standard deviation is the same in each sample (k-
space or image space) before and after the signal processing step. In practical terms this 
means that every signal processing step must including an appropriate scaling step. In parallel 
imaging, the actual unaliasing process introduces a spatially varying noise distribution. 
Specifically, there will be local noise enhancement due to the g-factor [1]. In this lecture, we will 
discuss that most Cartesian parallel imaging procedures (SENSE and GRAPPA) can be 
expressed as phased array combining [5, 6]: 
 ૉ(ܠ, (ܡ = ෍ ,࢞)࢏࢛ ࡺ࢏ࢇ(࢟

ୀ૙࢏ (࢞, ࢟) 
(5) 

 
Where ૉ(ܠ, (ܡ  is the unaliased (SNR optimal) signal at location (x,y), ࢛࢏(࢞, ࢟)  is the array 
combining coefficient for coil ࢏ , at location (x,y), ࢏ࢇ(࢞, ࢟)  is the aliased signal at the same 
location of coil ࢏, and ܰ is the number of coils. In other words the reconstructed image is a linear 
combination of the aliased signals in all channels and the linear combination coefficients 
(unmixing coefficients ࢛࢏) vary spatially. Based this expression, the spatially dependent noise 
amplification (also known as g) can be found as the root sum squares of the coil combining (or 
unmixing) coefficients: 
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,ܠ)܏ (ܡ = ඩ෍|࢛࢏(࢞, ࢟)|૛ࡺ
ୀ૙࢏  

(6) 

 
Using this knowledge in combination with the noise scaled signal processing steps, it is possible 
to obtain an image where the value in each pixel is in units of SNR. The approach for obtaining 
an SNR scaled image for parallel imaging is outlined in Fig. 1. In this lecture we will explore the 
utility of such SNR scaled reconstructions when comparing reconstruction algorithms.   
 

 
Figure 1. Outline of SNR scaled reconstruction. The reconstruction is preceded by a noise-pre-whitening step. All signal processing 
steps maintain unit noise variance. The parallel imaging unmixing step introduces a spatially varying noise distribution. This 
distribution is defined by the g-map. Through a division by the g-map in the final processing step an image in SNR units is obtained.  

 
For some types of reconstruction algorithms, it is not possible to use this SNR scaled approach 
for evaluating performance. This is the case for algorithms where unmixing coefficients are 
never explicitly formed (such as iterative reconstruction algorithms) or in cases where parts of 
the reconstruction code are inaccessible to the user, in which case the scaling may not be 
known. In such cases, it is possible to use the pseudo-replica method to gain insight into the 
SNR performance of a given algorithm. With this approach, multiple reconstructions (replicas) 
are performed and for each replica, noise with a known distribution is added to the original raw 
data. Ideally the noise should be added with the same distribution (and correlation) as the 
original experiment. This can be achieved by adding noise after the pre-whitening step 
described above, in which case the added noise has a noise covariance matrix equal to identity. 
After repeating the reconstruction a number of times, the noise standard deviation in each pixel 
can be determined by taking the standard deviation across the replicas and the signal is the 
mean signal in all replicas. The pseudo replica method provides a straightforward way of 
evaluating reconstruction algorithms even when some of the reconstruction components are 
unknown or the algorithm never explicitly forms unmixing coefficients. It is, however, time 
consuming and not suitable for on-the-fly evaluation of SNR performance on the scanner.  
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There are some types of parallel imaging problems, where it is not feasible to form unmixing 
coeffcients explicitly. In these reconstruction algorithms, eq. 1 often has a structure that does 
not permit a simplification into a set of simpler problems and thus the inversion problem is much 
more demanding. In those cases, we often use iterative algorithms. In practice, we use an 
iterative solver to minimize: ԡ۳ૉ −  ԡ૛ (7)ܛ
 
Often there are additional regularization side constraints, e.g.: 
 ૉ෥ = ࢔࢏࢓ ࢍ࢘ࢇ {ԡ۳ૉ − ԡ૛ܛ +  ૉԡ૛} (7)܂ԡࣅ
 
Where ܂ is some linear transform of the solution and ࣅ is a tunable regularization parameter 
used to control the tradeoff between data consistency and regularization. In this lecture we will 
review basic techniques and software for solving such problems and demonstrate how these 
techniques form the basis for iterative SENSE [7] and the SPIRiT [8] algorithm.  
 
CONCLUSION:  
This lecture focuses on how to deal appropriately with noise in the acquired data. We will review 
techniques for noise pre-whitening and ways to arrive at SNR scaled images. The lecture also 
introduces iterative parallel imaging reconstruction with some practical implementations 
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