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HIGHLIGHTS 

• Luminal stenosis alone is not the only indicator of plaque vulnerability 

• MRI allows the assessment of a wide range of large vessel atherosclerotic wall 

characteristics including plaque morphology,  inflammation, neovascularisation and 

biomechanics 

 

TARGET AUDIENCE 

 Scientists and Clinicians with an interest in the rationale for and methods of carotid vessel 

wall imaging 

 

OUTCOME/OBJECTIVES  

• Describe the main MRI techniques used for carotid vessel wall imaging 

• Identify the major criteria for defining carotid plaque vulnerability 

 
 
PURPOSE  
 
 In the US approximately 795,000 people experience a new or recurrent stroke each year 

accounting for nearly 1 in every 19 deaths (1). The majority of strokes (87%) are ischemic in origin 

with approximately 25-50% of these originating from carotid atherosclerosis (2).  Analysis of the 

pooled results from the major randomised controlled trials of carotid endarterectomy have only 

demonstrated a significant benefit, in terms of a reduced risk of subsequent ipsilateral stroke,  in 

participants with severe stenosis (70-99%) and only a marginal benefit in subjects with moderate 

Proc. Intl. Soc. Mag. Reson. Med. 22 (2014)



2 
 

stenosis (50-69%) (3). All of these studies determined the degree of stenosis from measurements of 

luminal diameter using X-ray contrast angiography. However, the European Carotid Surgery Trial 

(ECST) found that 43.8 % of the symptomatic trial participants  had a <30% stenosis (4), whilst the 

North American Symptomatic Carotid Endarterectomy Trial (NASCET) found that the 5 year 

ipsilateral stroke rate was 22.2% for subjects with a  <50% stenosis (5). Hence the risk of a carotid 

stroke cannot be simply determined from the degree of luminal stenosis alone. Indeed, Glagov in 

1987, described the phenomenon of adaptive arterial remodelling in which coronary artery plaques 

enlarged whilst preserving the luminal cross-sectional area (6). Since then histological analysis of 

carotid plaques have helped to correlate morphological features with corresponding clinical 

syndromes (7, 8).  In addition other features of "vulnerable plaques", i.e. those at a high risk for 

thrombosis, rupture and embolization have been identified (9, 10).  Major criteria include: active 

inflammation within the plaque; a thin fibrous cap overlying a lipid-rich necrotic core (LRNC) and 

fibrous cap disruption as well as severe stenosis. Minor criteria include intraplaque haemorrhage 

(IPH) and expansive remodelling. The exquisite soft-tissue contrast of MRI coupled with a range of 

technical developments has allowed these principal morphological features of carotid lesions to be 

assessed in vivo (11-16) as well as allowing functional imaging of biomarkers for plaque 

inflammation (17, 18), neovascularisation(19)  and biomechanics (20). 

 

METHODS  
 

The main challenge in obtaining high quality images of the vessel wall using MRI is to obtain 

a sufficiently good signal-to-noise ratio (SNR). Due to their relatively superficial location it is possible 

to obtain very high quality images of the carotid vessel wall particularly with the use of dedicated RF 

receiver coils that are positioned very closely to the subject’s neck (21) (see Figure 1). 

In order to achieve relatively short imaging times, fast spin echo (FSE) sequences are 

routinely used for morphological imaging; however, the multiple refocusing pulses often result in 

variable signal intensities from blood depending upon the flow characteristics. This can lead to 
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problems in separating slow flow effects from vessel wall pathology. Various schemes have 

therefore been developed to suppress the signal from flowing blood without adversely affecting the 

tissue contrast in the vessel wall. These include magnetisation preparation techniques such as 

Double Inversion Recovery (DIR) (22), Motion-Sensitized-Driven-Equilibrium (MSDE) (23, 24) and 

Delay Alternating with Nutation for Tailored Excitation (DANTE) (25) that are played out just prior to 

the imaging sequences. 

 

Figure 1. Dedicated four channel carotid coil. 

 

Since MRI can provide multiple contrast weightings e.g. blood-suppressed T1w, PDw, and 

T2w using FSE acquisitions and bright-blood gradient echo based time-of-flight (TOF) sequences it is 

possible to classify the various plaque constituents (26). The use of standard gadolinium-based MRI 

contrast agents can also help improve tissue differentiation, particularly in the identification of the 

LRNC (14). However, it is not possible to use DIR preparation schemes post contrast because the T1 

of blood is shortened unpredictably. Therefore techniques such as quadruple inversion recovery 

(QIR) were developed to allow effective blood suppression over a range of T1 values (27). MSDE and 

DANTE methods are also quite robust to changes in blood T1. Clinical examples of blood suppressed 

multi-contrast images obtained in a patient with a heavily calcified plaque are shown in Figure 2, 

whilst images from a patient with plaque containing a large LRNC are shown in Figure 3.  
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Recent developments in three-dimensional (3D)  acquisition techniques allow high quality 

blood-suppressed imaging of the vessel wall with near isotropic sub-millimetre voxel sizes (28). A 

clinical example of a 3D FSE acquisition with 0.6mm isotropic resolution is shown in Figure 4. 

 

Figure 2. Multi-contrast, motion-sensitised driven equlibrium (MSDE) prepared 2D fast spin echo and 3D time-of-flight 
(TOF) images obtained in a patient with a heavily calcified plaque. The calcification is best seen in the TOF image (arrow). 

 

Figure 3. Multi-contrast, motion-sensitised driven equlibrium (MSDE), prepared 2D fast spin echo and 3D time-of-flight 
images mages obtained in a patient with a large lipid rich necrotic core (LRNC). The LRNC is best seen in the post contrast 

T1w image (arrow). 

 

RESULTS  

 MRI has been used in a number of clinical trials evaluating morphological changes in 

carotid plaques.  Plaques containing large LRNC have been postulated as inferring a greater risk of 
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plaque rupture. A three-year, 108 subject, observational study by Underhill et al showed the 

proportion of wall volume occupied by the LRNC was the strongest predictor of subsequent  'surface 

disruption' (29).  A three year randomised, double-blind, placebo controlled study by Zhao et al 

showed a significant reduction in LRNC volume with intensive lipid-lowering therapy (30). 

 

Figure 4. Three-dimensional, coronally acquired, isotropic (0.6x0.6x0.6mm) voxel fast spin echo acquisition in a patient 
with a large lipid rich necrotic core (LRNC). The LRNC is best seen on the axial reformats (arrows). 

 
 Intraplaque haemorrhage (IPH) also confers a greater risk. In an 18 month, prospective study 

of 29 asymptomatic patients Takaya reported a significant increase in wall volume and LRNC in 

subjects with IPH compared to those without (31) . Underhill et al also found that the presence of 

IPH altered the remodelling pattern (32). 

  Macrophage infiltration and neovascularisation have been identified as two potential 

markers of inflammation and hence plaque vulnerability. Tang et al used ultrasmall 

superparamagnetic iron oxide (USPIO) nanoparticles in 47 asymptomatic patients, randomised to 

high and low dose statins (33). A significant reduction in USPIO uptake was identified in the high 

dose group as early as 6 weeks after treatment. Kerwin et al used DCE-MRI with pharmacokinetic 

modelling of the contrast agent uptake to investigate plaque neovascularisation (34). Whilst DCE-

MRI correlated with histological evaluation of plaque neovascularisation there was also a correlation 

with macrophage content (18).  
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 Biomechanical modelling of the forces acting upon atherosclerotic plaques can also be 

performed using data obtained from multi-contrast MRI images. Examples include: Trivedi et al 

showed a difference in plaque tensile stresses between symptomatic and asymptomatic patients 

(35);Sadat et al reported that plaques with IPH have significantly higher stresses than non-IPH 

plaques (36);Li et al demonstrated a reduction in arterial wall strain following aggressive lipid 

lowering therapy (37). 

 

DISCUSSION  

 MR imaging of morphological plaque features has been shown to be reproducible and 

correlates well with histological examination of plaques excised at endarterectomy. MRI derived 

measures of plaque volume have been successfully used in a number of longitudinal and 

interventional studies.  MRI also offers the capability to imaging molecular processes such as 

inflammation and neovascularisation that are highly related to plaque vulnerability. 

 

CONCLUSION 

 Multi-contrast carotid MRI allows a wide range of plaque characteristics to be imaged in vivo 

and is an important contributor to atherosclerosis research. The pathophysiological information that 

can be obtained has great potential for improving the selection criteria for vascular intervention.  
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