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Objective: To acknowledge the negative aspects of CEST imaging and pitfalls that may be encountered 
as an aid to deciding whether CEST is a worthwhile approach to explore for the diagnosis of cancer and 
the assessment of therapy. 
 

Introduction 
With all the buzz surrounding the topic of chemical exchange saturation transfer (CEST) as a “new”, 
molecule-specific contrast mechanism with promises of pH imaging, it is no surprise that there are many 
people interested in implementing it. This talk will provide a reality check, discussing the caveats that go 
along with the expectations, and the many challenges that stand in the way of an ideal CEST protocol.  
 
CEST contrast can be separated into two broad categories: 1. endogenous CEST[1, 2] and CEST from 
biological molecules [3, 4], and 2. exogenous CEST contrast agents[5, 6]. Endogenous CEST arises from 
molecules native to the cells: amide protons on the protein backbone, glycosaminoglycans in collagen, 
etc.  These protons resonate between approx. 0-5 ppm of the water resonance. Exogenous CEST 
contrast agents such PARACEST are typically chelates of paramagnetic ions (often a lanthanide), which 
can shift the resonance frequency into the hundreds of ppm. Each group shares common concerns 
related to nomenclature, sensitivity and specificity, protocol development, RF power, and data analysis, 
each from a slightly different perspective due to differences in concentration, resonance frequency and 
exchange rate of the labile protons. The exogenous contrast agents have additional issues regarding 
biocompatibility.  
  
 Sensitivity and specificity 
The sensitivity of CEST can be defined as CNR/unit concentration (a.k.a. proton transfer 
enhancement[4]) of the detectable moiety, with further refinements taking scan time into consideration 
(CNR efficiency[7]). In an ideal case, the bulk water protons could be completely and exclusively 
saturated through transfer of saturation from the CEST protons[8]. This is physically impossible due to 
finite relaxation times, resulting in saturation efficiency below 100%, and there are further limitations 
due to low concentration. PARACEST applications anticipate CEST-specific signal changes of upwards of 
50% from phantom studies [5, 9, 10], but this is hardly realized in preclinical applications in which signal 
changes in tumours do not exceed 5-10%[11, 12]. Endogenous CEST is limited to approximately 5% in 
tumours[9]. Specificity and sensitivity are hampered by the presence of a multitude of additional factors 
which affect the contrast, including RF power[13], T1 and T2 relaxation, field inhomogeneities[14], other 
CEST pools[15, 16], and magnetization transfer from semisolid protons[17]. Several methods have been 
developed which are less sensitive to instrumental and other non-CEST related parameters[18-21], 
however the most failsafe method for removal of these terms involves the time-consuming acquisition 
of parameter maps, requiring the addition of T1, B1, B0 etc. mapping to the protocol[17]. To make 
matters worse, when employing the most straightforward CEST quantification (CESTR asymm) the 
endogenous CEST from amide protons which resonate at 3.5 ppm is influenced by the presence of NOE 
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from aliphatic protons which resonate at ~-3.5 ppm[22] which is also increased in tumours.  Endogenous 
CEST is specific to a type of labile group (amide, amine, hydroxyl, etc) however there are many 
subclassifications so that all the endogenous CEST spectra are composed of groups of compound 
peaks[23], limiting the ultimate specificity of the technique. Since labile proton relative concentration or 
exchange rate are correlated in the CEST model[25, 26], it may be impossible to discern which property 
is causing the observed contrast changes, especially when both protein concentration and pH are 
expected to change within the tumour. Furthermore, with endogenous CEST, the low CNR severely limits 
the accuracy and precision of fitting to quantitative models. The majority of CEST experiments involve 
the generation of “negative contrast”, in that the saturated signal is less than the reference signal. This 
poses a problem for CEST interpretation, and post-processing must occur so that regions of high CEST 
“light up” in an image instead of appearing darker. It also has the consequence that images with more 
CEST will have a lower SNR due to the reduced signal.  
 
RF power 
In order to obtain the maximum saturation efficiency[27, 28], it may require a saturation pulse with an 
RF amplitude which exceeds the safety limits [29-31].  RF amplitudes ranging from 1 – 20 µT have been 
used in preclinical studies of CEST in cancer. Even if a strong RF pulse was permissible, spillover effects 
will cause the observed CEST effect to be reduced by direct saturation of the water resonance[32].  
There may not be an acceptable compromise between RF power limitations and minimum acceptable 
CNR. Increasing the field strength will increase the separation (in Hz) between CEST peaks and the water 
resonance, and provide increased SNR, however the deposited RF energy increases approximately with 
the square of the RF amplitude causing further restrictions on the CEST experiment.  
 
Protocol and Analysis 
As of this writing, CEST protocols are not available by default with any of the vendor’s standard pulse 
sequence packages, and consequently a considerable amount of expertise is required to set it up at a 
new location. Often, CEST pulse sequence development involves overcoming limitations on maximum 
pulse length, and before the protocol becomes reasonably “user friendly” scripts or automation must be 
implemented so that the manifold images required for a CEST spectrum can be grouped and the offset 
frequencies easily assigned. Protocols optimized for 3 T [27, 33, 34] must be completely revised for 7 
T[35] in light of the tighter restrictions on RF power. Since most vendors specify RF frequency in terms of 
Hz, rather than ppm, offset frequencies must also be recalculated when the field strength changes.  
 
Despite this fact, numerous institutions have implemented the CEST sequence, and preclinical[15, 36-
39] and clinical trials[27, 40-46] are underway. As CEST applications are in their infancy, with each new 
implementation improvements are made to the protocol and as a result there is no standard method. 
Optimizable parameters include the RF pulse strength and shape, TR, and choice of offset frequencies 
[10, 47, 48]. This limits the ability to compare CEST results between studies, especially in cases where 
the metric is “CEST contrast” (i.e. CESTR asymm[49] or peak amplitude[15, 21]) rather than a 
fundamental quantifiable property such as CEST pool concentration or exchange rate constants[50, 51]. 
Efforts have been made to reduce the scan time for CEST protocols[34, 52-54], but they largely remain 
time consuming and difficult to fit into a reasonable (i.e. 20 minutes) scan period, much less have 
sufficient temporal resolution[55] to capture immediate dynamic changes due to treatment.  
 
Depending upon the completeness of the acquired CEST spectrum data, there are several options for 
correction of artifacts and inhomogeneities[14, 56-58], and a choice of CEST metrics to be determined. 
Full parameter quantification, however, of a multi-compartment Bloch equation model is impractical 
(difficult to implement, time consuming to run fitting). Parameters may be fixed to save processing time, 
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however deciding on what parameters to fix at what value and the impact of this choice upon the 
unfixed parameters is not immediately clear.  
 
Nomenclature 
CEST Z-Spectra are preferentially displayed in order of decreasing offset frequency from left to right. 
This has its origins in NMR spectroscopy, where historically the axis was ordered from low shielding to 
high and the offset frequency is highest for the lowest amount of shielding. Ordering the x-axis from 
positive to negative values is the source of much confusion for those approaching CEST from a non-
spectroscopic background. Worse, if one was to mistakenly switch the axis orientation, the presence of 
the aliphatic NOE at the incorrectly assumed position of amide CEST is misleading to the extent that the 
error may not be immediately realized.  Even for those who are familiar with the axis convention, the 
reference point of the ppm axis is changed for CEST so that instead of a reference chemical (such as 
TMS) being denoted as 0, this is now shifted so that water protons are at 0 ppm.  
 
There are many different quantitative and semi-quantitative methods of expressing the CEST metric, 
and one must take care to recognize the differences between CESTR asymm[32], relative CEST pool 
size[59], and CEST peak amplitude[60] (to list a few). There are two schools of thought for expression of 
the exchange rate, as forward and backwards rates ksw/kws [59] or to wrap these into a single pseudo-
first order rate constant, R[61]. There are multitudes of (not necessarily mutually exclusive) applications 
with the naming convention “__CEST”, referring to the labile exchange group or another distinguishing 
quality of the CEST contrast agent [62-65]. These imaging applications all follow similar protocols, but 
have their own set of optimized scanner parameters.   
 
Biology and Chemistry 
CEST protocol development and experimentation requires a solid background in biochemistry (and 
chemical synthesis for the contrast agents), in addition to MRI physics. Knowledge of labile species, 
range of possible exchange rates and how these vary with solvent accessibility and pH are a few of the 
major issues. CEST contrast agents must be engineered to have exchange rates within an optimal 
window and with the offset frequency as large as possible[50, 66]. It is difficult to replicate the biological 
conditions and thus CEST contrast agents tested in phantoms often have markedly better performance 
than in vivo where unpredictable bonding may occur[67] and there is the presence of competing 
magnetization transfer pathways[9]. 
  
In order to interpret CEST images of cancer, one must be aware of which biological compartment is 
measured by the CEST experiment – mainly intracellular for endogenous amide CEST due to the higher 
concentration of proteins and peptides[2], and extracellular for PARACEST due to the accumulation of 
extravasated contrast without uptake by the cells[68-70]. Intracellullar and extracellular pH behave 
differently depending on the pathology or treatment [71-75], and the sensitivity of the CEST experiment 
to changes in these compartments must be determined prior to embarking on large scale studies. 
Changes in pH (especially intracellular) are small due to the mechanisms for maintenance of 
homeostasis[76].    
 
CEST contrast agents 
An immediate concern with CEST contrast agents (namely PARACEST), as with any injected compound, is 
toxicity to humans and the associated lengthy approval process for those deemed safe in pilot 
preclinical trials. PARACEST agents are similar in structure to Gd-containing counterparts used as T1-
shortening agents; the chemistry is also similar and the stability of the compounds is more closely 
related to the ligand/chelate than the lanthanide ion[67]. Paramagnetic ions are coated, chelated or 
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incorporated into macromolecular structures during preparation, which all but eliminates their 
toxicity[77]. However, PARACEST agents larger than 5nm evade rapid clearance by the kidneys[78] and 
high concentrations can accumulate in the tissue once leaving the blood pool[79]. Over time, if the 
agents remain in the system (often in patients with impaired kidney function) the agents can break 
down to reveal the toxic core.   
 
Oncological applications of CEST and alternatives 
CEST has been proposed as an MRI contrast mechanism sensitive to protein concentration and pH, 
however the question remains whether it is more effective than pre-existing imaging methods with 
similar objectives.  Although CEST performs well at identifying regions of tumour, with the exception of 
recurrent cancer in the presence of radiation necrosis[80], it does not appear that CEST offers improved 
diagnostic potential over standard methods (i.e. T1- and T2- weighted imaging, DCE-MRI).  There is 
potential in CEST for identification of hypoxic regions which have increased glycolysis[81] and may be 
resistant to treatment, but it is unclear whether this offers sufficient advantages over FDG-PET. 
Endogenous pH imaging is an enticing target for CEST experiments, however absolute pH imaging with 
CEST remains elusive[82, 83].  CEST images which are simply “pH-sensitive” may not be accurate enough 
to be helpful for evaluation of pH-triggered drugs[84-86].          
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