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Introduction 

Skeletal muscle is the body’s largest organ and is essential to many aspects of human 

physiology, including movement, glucose uptake and storage, thermogenesis, and total body 

water balance.  MRI methods allow investigators to assess many aspects of muscle structure and 

function.  A key point of focus for this abstract and presentation will be the muscle 

microvasculature, the proper function of which is essential to all of the activities noted. The 

purposes of this abstract and presentation are 1) to describe the changes to muscle microvascular 

structure and function that occur in obesity and Type 2 Diabetes Mellitus (T2DM) and 2) to 

describe the use of BOLD MRI-based methods for studying muscle microvascular function in 

obesity and diabetes. 

 

Changes to the Muscle Microvasculature in Obesity and Diabetes 

Diabetes is a severe and costly disease whose prevalence in Western countries is 

increasing steadily.  Most of these cases are T2DM, which involves defects in both insulin 

secretion and sensitivity.  Persons with T2DM have elevated risks for stroke, heart disease, 

hypertension, adult-onset blindness, non-traumatic amputation, kidney disease, and neuropathy 

(1). In the United States, the rate of new diabetes diagnoses is expected to double between 2010 

and 2050, and the overall prevalence is expected to increase from 14% to 21% (2). Moreover, 

with obesity and obesogenic lifestyles being central to the development of T2DM, it is 

noteworthy that in 2009-2010, the prevalence of obesity was 37.5% among adult Americans and 

16.9% among adolescent Americans (3).   

Skeletal muscle is one of the principal sites of microvascular injury in T2DM.  Structural 

changes to the skeletal muscle microcirculation in diabetes include thickened capillary basement 

membranes (4), lower capillary density (4,5), smaller terminal arteriole diameter (5), and reduced 

capillary surface area for transport (6). Functionally, there are deficits to endothelium-dependent 

vasodilation in skeletal muscle (7-9), due to reduced nitric oxide (NO) synthesis and/or enhanced 

NO quenching (10-12).  NO-dependent vasodilation deficits are improved following Metformin 
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treatment (13). There may also be impaired endothelium-independent vasodilation (14), possibly 

due to increased adrenergic tone in the vascular smooth muscle (5,15,16). An increase in 

sympathetic tone, resulting from neuropathy of the Vagus nerve, may be an early contributor to 

autonomic dysfunction (17).  

The health consequences of these impairments are manifest in at least two ways.  First, 

skeletal muscle is the body’s principal site for glucose uptake and storage (18). Insulin increases 

skeletal muscle blood flow through an NO-dependent mechanism, and so deficits in this pathway 

and muscle perfusion more generally may lead to insulin resistance (19). Also, muscle metabolic 

deficits and vascular dysfunction reduce exercise capacity in T2DM (20-23).  During exercise, 

there is normally a global increase in sympathetic outflow.  Within the exercising muscles 

themselves, paracrine signaling phenomena produce a “functional sympatholysis” that produces 

a local vasodilatory response.  The obesity- and T2DM-related microcirculatory deficits cited 

above impair this process. This limits the ability of an obese, pre-diabetic or T2DM patient to use 

exercise to control blood glucose independently of insulin or receive the health benefits of 

regular exercise.   

In euglycemic, normotensive obesity, the muscle microcirculation undergoes similar 

structural and functional impairments to those in T2DM, including reduced capillary density (24-

26), increased arterial stiffness (27), and impaired NO-dependent signaling (28). There is 

enhanced α1/α2-adrenergic vasoconstrictor tone in the obese Zucker rat (29) and in obese 

humans, there is increased sympathetic tone (30,31) that may elevate blood pressure (32). These 

changes may individually or collectively contribute to the reduced insulin-stimulated muscle 

microvascular recruitment (33,34), reduced endothelium-dependent vasodilation (35), increased 

spatial heterogeneity in skeletal muscle blood flow (16), and decreased exercise blood flow 

(36,37) that have been observed in obesity. Collectively, these findings support the views that 

structural and functional microvascular and metabolic impairments may be not just be 

consequences, but also causes, of insulin resistance and T2DM.  

Understanding the role of human muscle microvascular dysfunction in obesity and 

T2DM requires the use of well characterized, image-based tools. In vivo imaging and 

spectroscopy methods can quantify tissue structure, physiology, and pathophysiology in the most 

translationally relevant contexts possible.  In particular, MRI methods that are based on BOLD 

contrast: 1) have been shown to reflect important physiological quantities such as blood volume 
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and %HbO2; 2) are non-invasive; 3) can test for muscle-specific responses and detect 

intramuscular heterogeneity; 4) have high temporal resolution; 5) do not require sophisticated 

tissue modeling and are widely available on clinical MRI systems; 6) are uninfluenced by 

subcutaneous fat thickness; and 7) use neither ionizing radiation nor an exogenous contrast 

agent. This last point is especially important for T2DM patients in the era of nephrogenic 

systemic fibrosis (38). 

 

BOLD MRI to Study Muscle Microvascular Function 

The muscle BOLD effect was identified 15 years ago (39-41).  Muscle BOLD effects are 

largest for T2*, but there is a T2 effect also (41-45).  In general, BOLD effects result from 

deoxyhemoglobin’s paramagnetism (46), creating a magnetic susceptibility mismatch between 

deoxyhemoglobin and the diamagnetic water surrounding it.  BOLD effects may have 

intravascular and extravascular components.  The intravascular BOLD effect refers to the effect 

of blood oxyhemoglobin saturation (%HbO2) and hematocrit on the T2 and T2* of water protons 

in the blood. Free intracellular water protons that exchange with water from deoxyhemoglobin’s 

hydration shell or diffuse through its magnetic susceptibility gradient cause transverse relaxation 

(42,43,47,48).  Because of rapid trans-membrane water exchange, the whole-blood’s T2 or T2* is 

affected.  The intravascular BOLD effect changes the whole-tissue’s T2 or T2* in proportion to 

the relative blood volume.  The extravascular BOLD effect refers to the effect of magnetic 

susceptibility differences between blood vessels and the tissue parenchyma on the transverse 

relaxation of extravascular water.  As this water diffuses in and out of the magnetic susceptibility 

gradients formed around the vessels, they precess at different Larmor frequencies, and therefore 

undergo a transverse relaxation effect.  The extravascular BOLD effect may introduce a vascular 

structural dependence to BOLD phenomena (49,50).  However, several studies have shown that 

under most reasonably foreseeable experimental conditions, the extravascular BOLD effect is 

practically unimportant in skeletal muscle at field strengths of 3T and below (51-54). 

Recently, muscle BOLD MRI has been used to infer small vessel function following 

arterial occlusion (55) and the infusion of vasoactive compounds (53), to estimate oxygen 

extraction during exercise (56,57), and to study vascular function in peripheral artery disease 

(58). Another application, and the focus of this abstract/presentation, is the use of BOLD MRI to 

study muscle microvascular function associated with muscles’ primary functional state, 
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contraction (52,59).  Brief (<10 s) isometric contractions have been used as a model of the onset 

of exercise. 

A brief isometric contraction places a relatively small metabolic load on a muscle. During 

the contraction, intramuscular fluid pressure increases. This compresses the arterioles (60) and 

reduces blood volume in the venous circulation (61). After the contraction, the vessels refill and 

dilate; blood volume increases transiently (62). Because blood has a greater water content than 

the muscle tissue it displaces (63,64), the proton density increases. Also, the flow response is 

generated in anticipation of a longer exercise bout, so the increase in O2 supply exceeds the 

increase in O2 demand (in healthy persons). Thus, the oxy-hemoglobin saturation (%HbO2) is 

transiently elevated.   

Taking advantage of this transient elevation in %HbO2, Meyer et al. were able to observe 

a transient, positive change in BOLD-dependent signal intensity (SI) following a 1 s isometric 

contraction (52).  The authors suggested that BOLD contrast in skeletal muscle may be used to 

reflect microvascular function.  Indeed, a subsequent study by Towse et al. showed that the post-

contraction muscle BOLD contrast in chronically physically active subjects is ~3-fold higher 

than the responses in sedentary subjects. Also, they developed a tissue-specific metabolic and 

vascular model and used it to show that post-contraction BOLD SI changes depend on the 

balance between O2 delivery and O2 consumption, with a strong dependence on blood flow and 

volume changes. A final study from this group showed that there were no differences in post-

contraction BOLD responses among T1DM and T2DM patients and age, body-mass index 

(BMI), and physical activity matched controls that were detectable by this approach.  However, 

they did report age-dependent variations in post-contraction BOLD contrast (65).   

Based on the studies from the Meyer group, Damon and colleagues used a dual gradient-

recalled echo (GRE) MRI sequence to study blood volume and %HbO2 changes in the muscle 

microvascular bed following isometric contractions (66).  As implemented in this context, the 

dual-GRE sequence acquires signals with a repetition time (TR) of 1 s and with echo times (TEs) 

of 6 ms and 46 ms.  Figure 1 shows sample SI time course data from their 2011 paper on obesity 

and T2DM (67). Panels A and D show data from a healthy subject and illustrate how the 

amplitudes of the SI transients, ΔSI6 and ΔSI46, are measured. In their 2007 paper (66), they used 

two experiments to test the hypotheses that ΔSI6 reflects blood volume changes and that ΔSI46 

reflects %HbO2 changes.  First, they measured ΔSI6, ΔSI46, [THb], and %HbO2 before, during, 
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and after 2 and 8 s isometric dorsiflexion contractions.  The post-contraction [THb] and ΔSI6 

responses were similar following 2 and 8 contractions.  However, the %HbO2 and ΔSI46 

responses were larger following 8 s contractions than following 2 s contractions (66).  Second, 

they obtained NIRS and MRI data before, during, and after 5 min of arterial occlusion.  [THb] 

did not change during occlusion; however, %HbO2 decreased. Following cuff release, [THb] and 

%HbO2 increased over baseline.  Therefore in both experiments, similar behaviors were 

observed in the SI6 and [THb] data and also in the SI46 and %HbO2 data. These experiments 

demonstrate the correspondences between [THb] and SI6 and between %HbO2 and SI46.  This 

study (66), as well as the preceding study by Meyer et al. (52), also showed that the magnitude 

of the SI transients does not vary with TR, supporting the idea that flow-induced changes in the 

apparent T1 do not contribute significantly to the SI changes.  A final study in the development of 

the dual-GRE approach established the reproducibility of the protocol (68).  

The dual GRE protocol was then used to test for differences in post-contraction blood 

volume and %HbO2 responses in groups of obese/T2DM, obese, and lean persons (67). Eight 

T2DM patients were individually matched by age, gender, and race to non-T2DM persons with 

similar body mass index (BMI; 6/8 subjects in this “obese” group had BMI>30 kg/m2) and lean 

subjects (BMI< 25 kg/m2). The groups’ mean physical activity levels, resting heart rate (RHR), 

systolic and diastolic blood pressures (SBP and DBP), and ankle-brachial indices (ABI) did not 

differ significantly. The T2DM subjects had glycosylated Hb (HbA1C)=7.1±0.4%, indicating 

good diabetic control. ΔSI6 and ΔSI46 were measured from the tibialis andterior (TA) and 

extensor digitorum longus (EDL) muscles before, during, and after 10 s isometric dorsiflexion 
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contractions performed at 50% and 100% of maximum 

voluntary contraction (MVC) force.  

Figure 1 shows severely attenuated ΔSI6 and ΔSI46 

responses in obese and obese/T2DM subjects. Also, note 

the absence of overshoot of the baseline in the SI46 

response in these subjects. This reflects a blood flow 

response so reduced that it failed to cause the normal 

excess of %HbO2. Figure 2 shows the group-mean data for 

the 50% MVC and MVC conditions in the EDL; the TA 

data had similar trends, but fewer among-group differences 

(67). The post-MVC ΔSI6 response in the lean group was 

larger than in the other two groups (Fig. 2A). Across all 

groups, there were significant or near-significant 

correlations between the post-MVC ΔSI6 values in the 

EDL and: RHR (r2=0.171); HbA1C (r2= 0.172); and BMI 

(r2=0.387). Multiple regression analysis revealed BMI to be the only significant predictor of 

ΔSI6. The lean group had greater mean post-MVC ΔSI46 values than the T2DM group (Fig. 2B).   

  The ΔSI6 data reveal small vessel dysfunction that is related to obesity, with no 

additional effect of well controlled T2DM.  The ΔSI46 data suggest impaired O2 supply-demand 

matching in the obese/ T2DM subjects. Finally, the larger effects in the EDL than in the TA 

indicate that these deficits occur in muscle-specific manners.  These conclusions are consistent 

with the proportionality of a muscle’s vascular response to fiber type and capillary density (69), 

fitness (59), and insulin sensitivity (70). The relationship of ΔSI6 to RHR suggests that 

sympathetic tone may be altered in obese subjects, consistent with published reports 

(5,15,16,29). Attenuated NO signaling (71) or sensitivity may also have caused the ΔSI6 deficits. 

Evidence thus exists to support the idea that differences in the time course and magnitude 

of the post-contraction BOLD contrast may provide powerful insights into muscle microvascular 

function. This technique has been used to study physically active subjects with supra-normal 

muscle vascular function and aging persons and T2DM patients with suspected and diagnosed 

peripheral vascular complications. Future studies will hopefully continue to address the 

sensitivity of these measurements to physiological regulators of muscle vascular function.  
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