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Magnetic Resonance is typically accomplished with application of both a static (or DC) magnetic 

field, B0, and a radiofrequency (RF) magnetic field, B1. To additionally accomplish imaging, switched or 
audiofrequency gradient fields, Gx, Gy, and Gz are typically applied. While the interactions of these fields 
with the net nuclear magnetization vector at a specific location as required for NMR and MRI can often 
be adequately described with the Bloch equation(s), many general aspects of signal, noise, artifacts, and 
safety cannot be understood without consulting the Maxwell Equations, given below in differential (left) 
and integral (right), time-dependent form. 
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Here E and B are the electric field and magnetic flux density vector fields, ε is electrical permittivity, ρ is 

charge density, μ is magnetic susceptibility, and σ is electrical conductivity. To express these in time 
harmonic form, as is often done for analysis of RF fields at a single frequency, the partial derivative with 

respect to time (∂/∂t) is replaced with jω where j is the imaginary unit and ω is the radial frequency of 
the time-varying field (especially the Lamour precession frequency of the nucleus and B0 strength of 
interest). 

All of these equations have relevance to some aspect of MRI. For example, Gauss’s Law for 

Magnetism (Eq. 2) coupled with the relation B=μH can be used to describe subtle distortions of B0 

related to miniscule differences in μ between air and tissue (or between different tissues), which can 
result in notable undesired artifacts (or desired contrast) in MRI (1-4). Gauss’s Law for electric fields (Eq. 
1) can be used to describe “conservative” electric fields arising from charge density on coil conductors 
(5, 6).  As indicated with Faraday’s Law (Eq. 3), a time-varying magnetic field can induce electric fields 
(and corresponding electric currents) in a nearby conductor. This can result in detectable signal during 
signal reception if the conductor is a receive coil and the time-varying field is caused by the rotating net 
nuclear magnetization vector (7), or in adverse heating during nuclear excitation if the conductor is 
human tissue and the time-varying field is the transmitted B1 field (8-11). Ampere’s Law (Equation 4 
minus the right-most term) describes how, at low frequencies or over electrically small distances, an 
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electrical current density, J=σE, can produce a magnetic field throughout space (12, 13), and Maxwell’s 
correction to this, the “displacement current term” on the right shows how a time-varying electric field 
can also induce a magnetic field, which is increasingly important in MR at increasingly high B0 strengths 
and correspondingly higher B1 frequencies and shorter RF wavelengths (14-16). 

General understanding of trends and relations can be understood with some analytically-based 
representations of Maxwell’s Equations (7, 8, 17, 18). For highly accurate understanding of the behavior 
of electromagnetic fields in specific complex geometries (such as specific coil designs or the human 
body) requires numerical simulation (1, 2, 3, 9, 10, 14-16, 19-22).  

In this talk we will discuss several examples of how Maxwell’s equations are key to 
understanding signal, noise, artifacts, and safety in MRI. We will discuss examples of how analytically-
based calculations can yield valuable insights, and how numerical simulations can produce specific 
information. Strengths and weaknesses of different simulation approaches will be compared. Attendees 
should have an increased appreciation for the relevance of Maxwell’s equations to all aspects of MRI, 
and an improved understanding of how electromagnetic fields can be simulated for analysis of signal, 
noise, artifacts, and safety in MRI. 
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