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HIGHLIGHTS 

• Aqueous hyperpolarized 13C contrast media prepared by Parahydrogen Induced 
Polarization (PHIP) for in vivo use 

• Non-toxic hyperpolarized gas produced by heterogeneous (het) PHIP 
• Xenon Induced Polarization (XIP) of 13C biomolecules using hyperpolarized 129Xe 

produced by clinical 129Xe polarizer using Spin Exchange Optical Pumping (SEOP) 
 
HOW TO HYPERPOLARIZE AGENTS 
 
TARGET AUDIENCE: Biochemists, Pulmonologists, Chemists, Physicists 
 
OBJECTIVE: Broaden the knowledge about hyperpolarized contrast agent production by other 
hyperpolarization methods: PHIP, SEOP, XIP 
 
PURPOSE: Hyperpolarization temporarily increases nuclear spin polarization P significantly 
(i.e. orders of magnitude) above equilibrium polarization level endowed by the main detection 
field B0. This enormous polarization increase translates in the corresponding increase of 
Magnetic Resonance (MR) sensitivity of exogenous compounds. Biomolecules (e.g. pyruvate, 
choline, succinate, etc.) (1,2) and inert gases (3He, 129Xe, etc.) (3,4) with long spin-lattice 
relaxation times T1 can be used to preserve hyperpolarized state with useful imaging lifetime 
ranging from tens of seconds (5) to hours (6). These hyperpolarized compounds can be used as 
contrast media for molecular imaging of metabolism and organ function. Fundamentally, 
hyperpolarized contrast agents can provide better understanding of molecular pathways than 
Positron Emission Tomography (PET) contrast agents, because MR can non-invasively discern 
not only the uptake of hyperpolarized molecule, but also its metabolic product(s) (i.e. chemical 
environment of the hyperpolarized spin label) (2,5,7) and tissue compartmentalization (i.e. 
physical environment) (8). Furthermore, because nuclear spin polarization of hyperpolarized 
spin state is not endowed by the detection magnetic field B0, low-field MRI (< 0.1 T) of 
hyperpolarized contrast media can provide greater sensitivity than that of conventional high-field 
detection (9,10) mitigating the need for B1 and B0 mapping, and potentially enabling true sub-
minute MR examination without requirement for expensive MRI scanner and specific absorption 
rate (SAR) concerns (11). 

While dissolution Dynamic Nuclear Polarization (DNP) is the most advanced 
hyperpolarization technique, other methods can also be used to hyperpolarize contrast agents 
for molecular imaging of metabolism and function. The goal of this presentation is to cover the 
fundamentals of two other hyperpolarization techniques: (i) Parahydrogen Induced Polarization 
(PHIP) (12,13), and (ii) Spin Exchange Optical Pumping (SEOP) from the perspective of 
preparation of a batch of aqueous/injectable of gaseous/inhalable hyperpolarized contrast agent 
for molecular imaging in preclinical or clinical setting. 
 
METHODS AND RESULTS: Conventional PHIP uses a 13C enriched molecular precursor with 
a double or triple carbon-carbon bond for molecular addition of parahydrogen gas (Fig. 1A) 
using Rh(I) catalyst. Parahydrogen provides the source of hyperpolarization. The molecular 
addition is required to be fast on the time scale of a few seconds (14) in order to preserve 
hyperpolarization of nascent protons of hyperpolarized product. The final step of PHIP process 
is polarization transfer from nascent protons to 13C nucleus, which is typically a long-lived 
carboxyl site with T1 up to 100 s (15,16). PHIP produces 13C contrast agents with 13C %P up to 
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50% (17). The entire process can be conducted in aqueous medium allowing preparation of a 
batch of contrast agent suitable for in vivo use (18). Further heterogeneous manipulations 
enable isolation of pure 13C hyperpolarized agents free from Rh(I) catalyst (19). The first 
generation of PHIP contrast agents for biomedical use have been limited to a few compounds, 
because of the chemical prerequisite of unsaturated carbon-carbon bond adjacent to long-lived 
13C site (Fig. 1) prohibiting the use of –OH groups adjacent of C=C motif (Fig. 1A). Hydroxyl 
group is found in many biological compounds: lactate, choline, etc. As a result, only a few 
contrast agents have been developed: 2-hydroxyethyl 1-13C-propionate (HEP) (20), tetrafluoro-
1-13C-propionate (TFPP) (21), 15N-propargylcholine (22), 1-13C-succinate (SUX) (23,24) and 
others (25). Some were successfully validated in vivo for imaging of vasculature (26), cancer 
(27), and plaque deposits (8). However, the recent demonstrations of protected –OH group use 
in PHIP precursor (28,29) adjacent to the unsaturated carbon-carbon bond significantly 
expanded the reach of biomolecules amenable by conventional PHIP: protected ethanol (29), 
lactate (14), choline (30), and potentially many others. 

While many molecules can be hyperpolarized using conventional PHIP, there are other 
key requirements in addition to biochemistry discussed above. First, the agents must have 
sufficiently long T1 to penetrate biochemical pathway in vivo. Deuteration of the molecular 
precursor allows significantly extending the lifetime of hyperpolarized state from several 
seconds (23) to tens of seconds (24). Second, high level of hyperpolarization (> 5%) should be 
generated for sufficient increase of MR signal in vivo. This is achieved via a second added 
benefit of deuteration of the molecular precursor, which simplifies spin-system to three spins: 
two nascent protons and 13C and the use of highly specialized RF pulse sequences (20,31) for 
polarization transfer (Fig. 1A) and PHIP polarizers. A typical PHIP polarizer (9,16,32,33) (i) 
maintains a low field of a few mT over a high-pressure chemical reactor (ii) with hydrogenation 
chemistry controlled by an automated gas/liquid valve manifold and (iii) with RF pulses enabled 
by large volume RF coils for efficient polarization transfer. 

Other broad group of PHIP approaches utilizes heterogeneous (het) catalysts including 
those based on Rh(I) allowing ultra-fast hydrogenation of gases (34,35). The use of het 
catalysts pioneered by Kovtunov and Koptyug (36) enables PHIP production of pure non-toxic 
hydrocarbons for gas imaging in vitro and potential in vivo use similarly to SEOP of inert gases, 
e.g. 3He, 129Xe, etc. 
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Figure 1. The schematics of PHIP, SEOP and XIP processes. 
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SEOP has been available for decades (3). While 3He supply became very limited, a 
number of SEOP 129Xe polarizers have been demonstrated recently (37,38) including a recent 
development of open-source batch 129Xe polarizer (6) mitigating the need for 129Xe cryo-freezing 
(6,39). Production of 129Xe by SEOP aims to fulfill several requirements for biomedical use: (i) 
negligible gas contamination by Rb for safe patient administration, and (ii) maximizing %P of 
hyperpolarized 129Xe in one 0.5-1.0 L batch of produced gaseous contrast agent at maximum 
129Xe partial pressure to maximize the payload of 129Xe magnetization for pre-clinical and clinical 
use. While hyperpolarized 129Xe as a contrast agent enables a variety of clinical MRI exams 
reporting on lung function, e.g. ventilation, perfusion, etc. (4,40), it can also be used as a source 
of hyperpolarization (Fig. 1B). 13C hyperpolarized CS2 was demonstrated by dissolving CS2 in 
hyperpolarized liquid Xe (41). Furthermore, biomolecules (e.g. 13C-acetic acid) can be mixed 
with hyperpolarized xenon in the gas phase followed by mixture condensation into the solid 
phase and polarization transfer from 129Xe to 13C (42) enabling Xenon Induced Polarization 
(XIP). As a result, SEOP derived 129Xe hyperpolarization of clinical grade Xe can be transferred 
to 13C enriched biomolecules resulting in pure hyperpolarized liquids (42) that can be potentially 
used as metabolic contrast agents for molecular imaging. 
 
DISCUSSION AND CONCLUSION: PHIP is inherently a relatively low-cost hyperpolarization 
technology, which has been successfully validated via pre-clinical molecular imaging. While it 
had a significant limitation of amenable to hyperpolarization biomolecules, this limitation has 
been alleviated by the recent use of –OH protected unsaturated PHIP precursors, the use of 
advanced heterogeneous procedures for production of pure hyperpolarized biomolecular 
contrast agents, and the use of het-PHIP for production of non-toxic hyperpolarized gases. 

Hyperpolarized 129Xe is a useful clinical contrast agent for functional lung imaging. 
Furthermore, clinical grade hyperpolarized 129Xe can serve as a source of hyperpolarization for 
production of pure hyperpolarized biomolecules via XIP. 
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