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Network discovery with fMRI: analytic choices and their implications 

 

OUTLINE: 
 

I. Approaches for defining networks (ICA, seeds, ROIs) 

 

II. Processing issues (motion, autocorrelation, filtering) 

 

III. Other issues (task vs rest, overlap of networks) 

 

IV. Applications (diagnostic, prediction) 

 

V. Time-varying networks 

 

VI. Summary  

 

TAKE-HOME MESSAGES/WHAT YOU SHOULD KNOW: 

 

1. Awareness of various ways of defining a brain network 

2. The importance of various processing choices and corrections connectivity results 

3. Uses of the multivariate group ICA approach in extracting and analyzing brain networks 
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R. M. Hutchison, T. Womelsdorf, E. A. Allen, P. Bandettini, V. D. Calhoun, M. Corbetta, S. D. 

Penna, J. Duyn, G. Glover, J. Gonzalez-Castillo, D. A. Handwerker, S. D. Keilholz, V. Kiviniemi, 

D. A. Leopold, F. de Pasquale, O. Sporns, M. Walter, and C. Chang, "Dynamic functional 

connectivity: promises, issues, and interpretations," NeuroImage, vol. 80, pp. 360-378, 2013. 

 

Overview: 

From region of interest (ROI) to seed-based correlations to approaches like independent 

component analysis (ICA) and graph theory, there are many ways to define a brain network and 

every paper seems to use the word differently. We will discuss common definitions of the word 

brain network and briefly discuss several of the main approaches. One approach which is being 

used with increasing frequency is independent component analysis (ICA). Independent component 

analysis is a statistical method used to discover hidden factors (sources or features) from a set of 

measurements or observed data such that the sources are maximally independent. Typically, it 

assumes a generative model where observations are assumed to be linear mixtures of independent 

sources, and unlike principal component analysis (PCA) which uncorrelates the data, ICA works 

with higher-order statistics to achieve independence. 
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ICA has demonstrated considerable promise in characterizing functional magnetic resonance 

imaging (fMRI) data, primarily due to its intuitive nature and ability for flexible characterization 

of the brain function. As typically applied, spatial brain networks are assumed to be systematically 

non-overlapping. Often temporal coherence of brain networks is also assumed, although 

convolutive and other models can be utilized to relax this assumption. ICA has been successfully 

utilized in a number of exciting fMRI applications including the identification of various signal-

types such as resting-state networks (RSNs, e.g., Figure 2), task and transiently task-related 

components, and physiology-related signals in the spatial or temporal domain. 

Unlike univariate methods (e.g., seed or regression analysis, Kolmogorov–Smirnov statistics), 

ICA does not naturally generalize to a method suitable for drawing inferences about groups of 

subjects. For example, when using the general linear model, the investigator specifies the 

regressors of interest, and so drawing inferences about group data comes naturally, since all 

individuals in the group share the same regressors. In ICA, by contrast, different individuals in the 

group will have different time courses, and they will be sorted differently, so it is not immediately 

clear how to draw inferences about group data using ICA. To address these issues, several multi-

subject ICA approaches have been proposed that differ in the organization of data and subsequent 

assumptions of spatial and/or temporal consistency across subjects. I will discuss several of these 

approaches and present evidence that the commonly-used “temporal concatenation” approach 

provides excellent estimates of subject activations which can be used to make inferences about an 

individual or at the group level (e.g., Figure 3).  

 

 
Figure 2.  Select components obtained by applying ICA to resting-state fMRI data. From Allen et al., Frontiers in 

Systems Neuroscience (2011). 
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Figure 3. Examples of age (A) and gender (B) effects on the intensity of spatial maps.  Group ICA of resting-state 

data from 603 subjects was performed using the “temporal concatenation” approach.  Spatial maps for individual 

subjects were estimated with direct back-projection.  From Allen et al., Frontiers in Systems Neuroscience (2011). 

 

This lecture will also focus on the impact of preprocessing steps. This includes, for ICA, things 

like 1) the choice of model order (i.e., number of components to estimate), and 2) selecting and 

interpreting components “of interest”. But it also include other general areas such as motion 

correction, whether to correct for autocorrelation, physiologic signal regression, etc. 

In the last section of this lecture we will discuss the rapidly growing area of capturing time-

varying connectivity patterns in brain imaging data. This is a promising field and especially 

important in analyzing resting fMRI data, for example, which is unlikely to have a consistent 

pattern of connectivity throughout due to the lack of a tightly controlled experimental condition. 

The use of dynamic connectivity approaches is a promising way to avoid averaging changing 

networks together and may significantly increase our ability to utilize these networks for 

characterizing healthy and diseased brain. 
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