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Highlights: 
• Magnetic resonance imaging (MRI) and spectroscopy (MRS) can be used in various 

organs to evaluate the effect of insulin resistance (IR). While the major target of this 

course is the musculoskeletal system, the use of MRI/MRS in studies of IR in the liver, 

heart, pancreas, and for the determination of whole body composition are briefly 

addressed. 

• Skeletal muscle contains two types of lipids that can be distinguished by 1H-MRS: 

intra- (IMCL) and extramyocellular (EMCL) lipids. IMCL are metabolically active 

molecules in small droplets close to the mitochondria which are related to IR, however, 

not as a cause but rather as a consequence of an unbalanced lipid metabolism. 

• IR affects glucose uptake and thus the replenishment of muscular glycogen which can 

be followed by 13C-MRS. Intermediate products like glucose-6-phosphate can be 

observed by 31P-MRS. 

• 31P-MRS saturation transfer experiments can determine flux through biochemical 

reactions and results have been interpreted as mitochondrial activity in IR; however, 

since glycolysis also contributes to the measured flux, the specificity of this method for 

mitochondrial activity is disputed. 

• Recovery of 31P-phosphocreatine is related to oxidative phosphorylation and thus 

mitochondrial activity. Also specific for mitochondrial activity is the determination of the 

flux through the TCA-cycle by the observation of infused 13C-labeled substances. 

• Hyperpolarized 13C substances are recently used to evaluate the effect of IR on 

metabolism, currently in particular in liver and heart. 

 

 

Various reviews provide an extended list of citations dealing with the effect of IR and its 

observation by MRI/MRS [1-18]. 
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Insulin resistance (IR), the (more epidemiologically motivated) “metabolic syndrome”, and 

overt diabetes are an interrelated complex of diseases which are affecting lipid- and 

carbohydrate metabolism. They represent major risk factors for cardiovascular diseases with 

serious consequences for the patients such as heart failure and cerebral stroke. Meanwhile, 

the number of affected subjects reaches endemic dimensions resulting also in an enormous 

threat to our health care systems. Several underlying mechanisms are currently discussed: 

(a) lipotoxicity, (b), mitochondrial activity (c) inflammation, and (d) oxidative stress [19-26]. 

 

MRI/MRS can determine the effect of IR on the metabolism and body composition in various 

organs. This is particular helpful in organs where biopsies are difficult such as in the liver or 

in the heart [27-40]. While 1H-MRS is accepted as the gold standard for the determination of 

intrahepatic lipids (IHCL), fat-water-imaging sequences - Dixon and in particular multi-echo-

versions – provide also excellent and spatially resolved results. Techniques to measure 

intramyo-cardiocellular lipids (ICCL) are demanding and not yet established in many places. 

Whole-body composition is an established MRI modality which is successfully used to follow 

the effect of interventions. 

 

Muscular tissue contains two different types of lipid stores, intra- (IMCL) and extra- (EMCL) 

myocellular lipids which are rather different in many aspects ([1] and refs therein). Thanks to 

their physical characteristics (EMCL with plate-like structures vs. IMCL in droplets), it is 

possible to distinguish the two depots in 1H-MR spectra. Since IMCL are related to IR, 1H-

MRS became a valuable alternative to muscle biopsies with subsequent histological or 

electron-microscopic determination. In studies on IR in skeletal muscle, the 1H-MRS based 

determination of IMCL is among the most frequently used in vivo methods. In particular 

dietary interventions or lifestyle changes with multiple determinations of IMCL are now done 

with help of 1H-MRS wherever available. 

One remaining problem in the determination of IMCL is the separation of the large EMCL 

resonance from the much smaller IMCL signal, in particular in obese subjects who would be 

among the most interesting groups for studies of IR. Methods such as spatially highly 

resolved chemical shift methods and/or two-(spectral)-dimensional spectroscopy [1,15,41] 

are developed to overcome these limitations and to give insight into lipid composition. 

 

Multinuclear MRS has been used to investigate the uptake of glucose and the synthesis of 

muscular glycogen ([2] and refs therein). These experiments are nicely showing the 

possibilities that are generated by the combination of various nuclei, in particular 13C- and 
31P-MRS. 
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31P-MRS saturation transfer is an elegant method to estimate the flux through biochemical 

reactions [42-48], e.g. creatine kinase or ATP synthase. While these methods have been 

used to determine mitochondrial activity - based on the fact that the aerobic synthesis of 

ATP is located in these organelles – it has been argued that it is also influenced by the 

activity of ATP synthase in the glycolytic pathway, thus reducing the specificity but not 

necessarily a potential clinical significance. 

 

Two MRS methods are more specific for mitochondrial activity, the infusion of 13C-labeled 

substances with an observation of 13C-glutamate following the flux through the TCA-cycle 

and the recovery of 31P-phosphocreatine (31P-PCr) after exercise. While PCr-recovery is a 

widely used MRS-method in other diseases and physiological conditions of the 

musculoskeletal system (see refs in [2]), it is much less applied in IR [49-51]. Higher 

magnetic fields with increased signal-to-noise allow nowadays at reduction of selected 

volumes and thus muscle specific observation [52,53]. The application of labeled substances 

is a very powerful technique, however, requires a lot of experience and generates 

considerable costs. 

 

Infusion of hyperpolarized 13C-substances has been strongly promoted for imaging 

purposes, e.g. the visualization of the ischemic heart wall etc. Beside these applications, 

hyperpolarized substances are also metabolized and can be used to determine the effect of 

IR, so far mostly in the liver and the heart [54-57]. 

 

MRI and in particular MRS are well suited to study the effect of IR on various organs. In the 

musculoskeletal system, biopsy is an alternative with additional information content, e.g. 

molecular biology examinations of the tissue. Nonetheless, the non-invasiveness of MR is a 

strong argument in particular for repeated measurements. In other organs than skeletal 

muscle such as liver or heart, MR has even more valuable arguments in the competition with 

biopsy which is limited to severe clinical situations. Further development of non-invasive MR 

methods for studies of IR is crucial yet it is not sufficient. Another obstacle for the application 

of MRI and MRS in studies of IR is the fact that the involved clinicians in endocrinology, 

diabetology, hepatology, sports medicine, and many other clinical specialties usually have 

no MR system available. Therefore, it is mandatory that radiological and biomedical MR 

groups support these clinicians methodologically in the application of MRI/MRS in 

collaborative studies of IR. 
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