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Highlights 

• Most non-iterative reconstruction methods can be separated into a calibration step 
that generates channel combination and unaliasing coefficients followed by a step 
that applies these coefficients to create reconstructed images. 

• Maps of image shading, noise amplification and aliasing energy can be created to 
better assess the image quality achieved by a reconstruction pipeline. 

• Complete characterization of coil sensitivities is not necessary to perform parallel 
imaging. 

TARGET AUDIENCE: Imaging researchers and students who would like to learn more about the practical 
issues involved in Parallel Imaging reconstruction. 

OBJECTIVES: This course will provide attendees with background theory and software tools that will 
make it easier for them to integrate parallel imaging into their projects and applications. This course will 
also equip attendees with an understanding of the design tradeoffs involved in choosing a parallel 
imaging strategy. The software tools and exercises part of this course will be available at 
http://gadgetron.sourceforge.net/sunrise. 

PURPOSE: Multi-channel receiver coil arrays are ubiquitous on modern scanners and even researchers 
and students whose research is not focused on Parallel Imaging often need to reconstruct multi-channel 
data sets. Whether using existing reconstruction routines or developing custom routines, an 
understanding of the issues involved with Parallel Imaging is necessary to use these routines effectively. 
The lectures and online software tools and exercises that are part of this course provide an opportunity 
to better understand the functionality and limitations of the components that make up a Parallel 
Imaging reconstruction pipeline. 

METHODS: 

A great deal of insight into the practical considerations involved with Parallel Imaging can be obtained 
by manipulating the mathematical model used to represent multi-receiver channel imaging. The 
acquired data can be decomposed into a signal and noise component (see Table 1 for details on 
mathematical notation): 

 ௝݀൫݇௫, ݇௬൯ = ,௝൫݇௫ܯ ݇௬൯ + ௝ܰ൫݇௫, ݇௬൯ , 
 

(1) 

where the signal component combines the transverse magnetization with coil sensitivity information 
and Fourier (gradient) encoding: 

,௝൫݇௫ܯ  ݇௬൯ = ඵ ,ݔ)௝ݏ (ݕ ݁௜ଶగ൫௞ೣ௫ା௞೤௬൯݉(ݔ,  (2) ,ݕ݀ݔ݀(ݕ

and the noise component is a Gaussian random variable as described in Table 1. 
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Channel Combination and Uniform Sensitivity 

When full Fourier encoding is used, a Fourier Transform applied independently to each channel 
transforms the signal into images of the magnetization shaded by the sensitivities of the receiver coils: 

 ௝݉(ݔ, (ݕ = ,ݔ)௝ݏ (ݕ ,ݔ)݉ .(ݕ (3) 
Creating a single composite image can be accomplished by performing an independent linear 
combination of the channels at each spatial location: 

 ෝ݉ ,ݔ) (ݕ = ෍ ௝ܿ(ݔ, (ݕ ௝݉(ݔ, ௝(ݕ , (4) 

where ௝ܿ(ݔ,  are channel combination coefficients that are determined as part of the image (ݕ
reconstruction. From a signal perspective, we would like our composite image ෝ݉ ,ݔ)  to have uniform (ݕ
sensitivity.  This can be accomplished by choosing channel combination coefficients that satisfy 

 ෍ ௝ܿ(ݔ, ,ݔ)௝ݏ(ݕ ௝(ݕ = 1. (5) 

When Eq. 5 is not satisfied, the reconstructed image will not have uniform sensitivity and this can result 
in a visible shading artifact, where the image is brighter in one region compared to another. Most 
commonly, this manifests as images being bright at locations near the coil elements and it can 
sometimes be hard to differentiate this receiver coil sensitivity artifact from shading due to spatial 
variations in transmit efficiency. 

Channel Combination and Noise 

The noise in the data can be separately followed through the Fourier Transform operation and results in 
noise at each pixel position that is similarly correlated across channels. We can denote this noise in the 
channel images as Gaussian random variables ௝݊(ݔ,  When channel combination occurs, the noise in .(ݕ
the composite image can be expressed as the resulting random variable: 

,ݔ)݊  (ݕ = ෍ ௝ܿ(ݔ, (ݕ ௝݊(ݔ, ௝(ݕ . (6) 

The standard deviation of ݊(ݔ,  is a function of the channel combination coefficients. Choosing (ݕ
channel combination coefficients that satisfy Eq. 5 generally results in the noise standard deviation 
changing across spatial locations. The means that the noise level in images formed form multi-channel 
data varies across the image, making the estimation of the image signal-to-noise ratio (SNR) more 
difficult. Specifically, estimating the noise level from a region without signal can give misleading results, 
since the noise level could be quite different in a region that contains signal. A useful way of visualizing 
noise amplification is as a map: plotting the standard deviation of ݊(ݔ,  as an image gives a “noise (ݕ
amplification map” for a reconstruction. 

Optimal Channel Combination Coefficients 

Unless otherwise specified, optimal channel combination coefficients usually refers to channel 
combination coefficients that are optimal in terms of SNR. Optimal channel combination coefficients can 
be computed independently at each pixel location. With N coils, we can concatenate the coil sensitivity 
values ݏ௝(ݔ,  at a given pixel location into a vector, s, of length N (where each element is the sensitivity (ݕ
at the given pixel for one of the channels). The channel combination coefficients at the same pixel 
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location can be similarly concatenated into a length N vector, c. For noise correlation across channels 
can be expressed as an NxN noise correlation matrix, Ψ. Ψ does not change with pixel location. Optimal 
SNR can be achieved by choosing channel combination coefficients that satisfy 

ࢉ  = ,ுશିଵ࢙ߛ (7)
where the H superscript indicates taking the Hermitian conjugate [1]. ߛ is a scalar value that can be 
chosen without impacting SNR, since increasing the magnitude of ߛ increases both the signal and noise 
equally. A unique set of the channel combination coefficients results from satisfying both Eq. 5 and eq.  
7, which results in ߛ =  When the noise correlation matrix is identity (e.g. because a pre .࢙ுશିଵ࢙/1
whitening step has been applied), the optimal channel combination coefficients can be expressed as 

 ௝ܿ(ݔ, (ݕ = ,ݔ)∗௝ݏߛ (ݕ (8) 
 

Absolute and Relative Coils Sensitivities 

To generate SNR optimal channel combination coefficients, it is necessary to know the relative 
sensitivity between the channels at each pixel location, but it is not necessary to know how the 
sensitivity of any channel changes with position, in any absolute sense.  To illustrate this difference, 
consider one method for estimating channel sensitivity information from a set of calibration images 
acquired on a multi-channel array. Disregarding noise and the resolution-dependent point-spread 
function, we can express the calibration images as the channel sensitivities multiplied by the transverse 
magnetization in the calibration scan, as in Eq. 3. A set of relative coil sensitivities [2] can be produced 
by dividing each of these images by the square-root sum-of-squares of the calibration images: 

,ݔ)௝ݏ̂  (ݕ = ௝݉(ݔ, ∑ට(ݕ ห ௝݉ᇲ(ݔ, หଶ௝ᇲ(ݕ = ,ݔ)௝ݏ ∑ට(ݕ หݏ௝ᇲ(ݔ, หଶ௝ᇲ(ݕ ݁௜∠௠(௫,௬). 
(9) 

 

Using the relative coil sensitivities computed in Eq. 9, or by some similar means, will result in SNR 
optimal channel combination, but image shading could remain because Eq. 5 may not be satisfied.  To 
satisfy Eq. 5, it is necessary to have additional information on how the sensitivity of at least one of the 
channels varies in space, in an absolute sense.  One method for achieving this is to collect additional 
calibration information from a uniformly sensitive coil. However, even without absolute coil sensitivity 
information, both SNR optimal channel combination and Parallel Imaging can be performed if image 
shading can be tolerated. 

The reader will also notice that Eq. 9 leaves a residual phase from the calibration magnetization. 
Designing a calibration scan to minimize the phase in the transverse magnetization is one way to deal 
with this complication. If this is not possible (e.g. if the calibration scan is embedded in an out-of-phase 
acquisition), this phase will propagate to the channel-combined composite image.  If a magnitude image 
is taken, this added phase will disappear.  Because most phase sensitive applications like temperature 
mapping or chemical shift encoded imaging rely on the relative phase between two or more 
acquisitions, as long as the same set of relative coil sensitivities is used for all acquisitions, the phase 
from the calibration magnetization will cancel out. 
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Uniform Undersampling 

Uniform undersampling is a very common way to take advantage of Parallel Imaging. One very attractive 
feature of uniform undersampling is that the procedure used with unaccelerated imaging can be 
repeated. Specifically, we can apply the Fourier Transform independently to each channel and then use 
independent linear combinations at each pixel location to combine the data into a composite image. 
However, the channel combination coefficients are replaced with coefficients that perform both a 
channel combination and unaliasing operation. Thus, we can rewrite Eq. 4 for the accelerated case as  

 ෝ݉ ,ݔ) (ݕ = ෍ ,ݔ)௝ݑ (ݕ ௝ܽ(ݔ, ௝(ݕ  (10)

Where ݑ௝(ݔ, ,ݔ)are a set of unaliasing and channel combination coefficients and ௝ܽ (ݕ  are aliased (ݕ
images that result from taking the Fourier Transform of uniformly undersampled data. 

There are many different ways that the coefficients,  ݑ௝(ݔ,  can be generated. The procedure for (ݕ
generating these coefficients is often called the calibration phase of a parallel imaging reconstruction. In 
the SENSE method [3], these coefficients are generated directly by solving a least norm problem 
composed using the channel sensitivities. The data driven calibration used in the GRAPPA [4] method 
can also be used to generate these coefficients. To do this, k-space GRAPPA coefficients must be 
converted into image space and combined with channel combination coefficients. 

Aliasing Energy 

Parallel Imaging acceleration introduces the potential for aliasing artifacts.  If we know the true coil 
sensitivity functions, we can evaluate a set of unaliasing coefficients to create an “aliasing energy map” 
that indicates which image locations are prone to have aliasing. 

G-Factor 

Equation 6 can be extended to the accelerated case by replacing the channel combination coefficients 
with the unaliasing and channel combination coefficients ௝ܽ(ݔ,  These new coefficient will alter the .(ݕ
noise amplification map, generally leading to increased noise in the final image. The g-factor isolates the 
effect of reduced gradient encoding on the noise amplification map by dividing the accelerated noise 
amplification map by the unaccelerated noise amplification map and correcting for the difference in 
scan time. 

 

DISCUSSION & CONCLUSION: 

Parallel Imaging introduces image shading, spatially varying noise and aliasing artifacts as three issues 
that must be addressed during image reconstruction and analysis. In the case of uniform undersampling, 
maps can be created to visualize each of these issues over the image. Creation of these maps relies on 
access to true coil sensitivity information. 
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,ݔ)݉  ,Transverse magnetization signal that is being imaged௝݀൫݇௫ (ݕ ݇௬൯ Datum acquired on channel with index j. ݇௫ and ݇௬ indicate the gradient encoding at 
the time the datum is acquired.  More completely, the k-space location can be 
written as a function of time, ݇௫(ݐ), ݇௬(ݐ).  I drop the parameter t in following 
expressions in favor of more compact notation. ܯ௝൫݇௫, ݇௬൯ Signal component of datum acquired on channel with index j at k-space location ݇௫, ݇௬. ௝ܰ൫݇௫, ݇௬൯ Noise on channel with index j at k-space location ݇௫, ݇௬. For trajectories that 
resample the same k-space location, ݇௫, ݇௬ should be replaced with t. Noise is 
modelled as Gaussian random variable that is independent and identically distributed 
along time (k-space location), but can be correlated and not identical across channels. ݏ௝(ݔ, ,Coil sensitivity; j indexes the coil array elements and x,y give the spatial position ݁௜ଶగ൫௞ೣ௫ା௞೤௬൯ Gradient, or Fourier, encoding; ݇௫ (ݕ ݇௬ give the k-space location and x,y give the 
spatial position. ෝ݉ ,ݔ) An estimate of the transverse magnetization signal (ݕ

Table 1: Mathematical Notation 
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