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Imaging brain function is a key feature of MRI. Beyond structural parameters such as the blood 
volume fraction or the direction of a fiber bundle, MRI methods have been developed to map blood 
flow or tissue oxygenation. To challenge the results obtained by MRI, one cannot simply rely on 
standard histology: post-mortem, blood does not flow anymore and the oxygen is gone! 

Several techniques are however available to obtain these physiological maps. One can either use 
clinical-like techniques such as positron emission tomography (PET) or animal specific techniques. In 
this presentation, we will describe some methods available to challenge MRI estimates and review 
results obtained by MRI and its challengers. 

Blood flow 

With MRI, blood flow can be mapped using several techniques, the most widely used approaches 
being dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) (1). 

Quantitative autoradiography. One of the oldest techniques to obtain quantitative blood maps is 
quantitative autoradiography (2,3). One injects intravenously a freely diffusible tracer (e.g. 
iodoantipyrine or HMPOA) labeled with a radioactive compound (14C, 99mTc…) or radioactive 
microspheres (but the analysis is then different from that of a freely diffusible tracer). During the 
injections, one samples the arterial blood (to collect an arterial input function), and, at the end of the 
injection, one collect the brain. Brain slices are then placed over a film or in a beta-imager to obtain 
autoradiography. Using the arterial input function and the map of accumulated tracer in the brain, 
one can derive a map of blood flow. Autoradiography has been used to challenge blood flow 
estimates obtained with ASL (4-6). In 2005, Ewing reported that ASL cerebral blood flows were above 
(34%) that reported by autoradiography (7).  
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Perfusion CT. One can map perfusion using X-ray, as performed in clinic. One monitors the passage of 
an iodine bolus. The relation between the signal and the iodine concentration is linear. Besides this 
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advantage, issues raised in dynamic susceptibility imaging (e.g. choice of arterial input function, 
deconvolution method) are the same between perfusion CT and MRI. Perfusion CT was performed in 
rodent using clinical CT (8) or synchrotron radiation (9). 

Positron emission tomography can also provide maps of blood flow, either using radioactive 
microspheres (10) or 15O-labeled gases (15O-CO2 and 15O2) (11,12). To ease the arterial input function 
sampling, Ose et al. used an arterio-venous shunt (11). In human, PET studies have also been 
performed to challenge blood flow maps obtained with MRI (13).  

Optical techniques such as Near Infrared Spetroscopy (NIRS) or diffuse optical tomography (DOT) 
also allows an access to some blood flow information (14). One illuminates the tissue with an array of 
light sources and collects and analyzes the light emerging from the tissue. To obtain quantitative 
values, one uses an optical contrast agent such as indocyanine green (15-17). Beyond in vivo 
acquisition, optical means of course allow much higher spatial resolution (18). This approach is non-
ionizing. Its spatial resolution is however much lower than that of perfusion CT or MRI. 

Brain oxygenation 

Using MRI, one can assess absolute tissue partial pressure of oxygen (e.g. FREDOM (19)) or change in 
tissue pO2 (e.g. MODILE, (20), blood oxygen saturation (21,22), or do MRI of Oxygen (17O) (23). 

Ex vivo, there are several indirect markers of hypoxia such as Pimonidazole, CA IX, Glut 1 (24). In vivo, 
one finds an equivalent to pimonidazole: the 18F-Miso, imaged by PET (25). In vivo, one can rely on 
blood gases, sampled in vessels in the vicinity of the organ of interest. It is however invasive to 
collect arterial and venous blood gases. 

PET (cf. above) can be used to map oxygen Extraction Fraction (OEF) and Cerebral Metabolic Rate of 
Oxygen (CMRO2) (12,26).  

Electron Paramagnetic Resonance Imaging (EPRI) can provide pO2 maps with a high spatial 
resolution (27-30). It requires  nitroxides or trityl radicals (e.g. triarylmethyl, TAM). From the oxygen-
induced spectral broadening of TAM, pO₂ maps can be derived. 

Optical techniques such as Near Infrared Spetroscopy (NIRS) or diffuse optical tomography (DOT) 
also allows an access to tissue oxygen saturation (14). Optical techniques however can go towards 
much higher spatial resolution (31,32). 
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