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Target Audience: Engineers and Scientists interested in research at higher magnetic fields (3T 
and above) 

Objectives: Understand how Transmit Arrays address key RF coil related issues such as B1
+ 

field in-homogeneities, that arise at ultra high fields due to the increased operating frequency 
(UHF) and resulting shortened RF wavelength.  

Background: Transmit arrays can help mitigate [1-4] a number of challenging issues that come 
up at higher magnetic fields and the concomitant higher operating frequencies. The two most 
noticeable difficulties encountered are increased B1

+ field in-homogeneities and SAR related 
challenges associated with the overall increase in RF power demands and E-field 
heterogeneity.  

For body dimensions at 3T and head dimensions at 7T and above the RF wavelength in 
dielectric tissue is comparable or smaller than the dimensions of the human anatomy. This in 
turn leads to RF phase related traveling time differences, prominent wave behavior and the 
potential for a significant difference between transmit B1

+ and receive B1
- fields [5-10].  It is 

possible to correct some of the resulting B1 field in-homogeneities within traditional multi-mode 
resonant volume transmit coils through individual amplitude and phase control of quadrature 
feed points [5], coil design modifications[11], as well as individual resonance element 
adjustments [12, 13]. However even better control of these effects can only be achieved with 
more degrees of freedom provided by, for example, dedicated transmit array systems that are 
capable of supporting a higher number of independent channels for RF transmission and that 
allow for “RF shimming” [14-24]. Ideally transmit arrays can provide for B1 transmit field 
homogeneity, transmit efficiency and SAR minimization the equivalent of what receive arrays 
achieve for optimal SNR and parallel imaging performance. Particularly since transmit arrays 
support parallel excitation pulses across multiple coil elements, as first proposed by Katscher 
[25] and Zhu [26].The related rapidly emerging parallel transmission methods significantly 
improve RF excitation homogeneity and they can achieve high spatial selectivity and pulse 
acceleration by taking full advantage of the ability to influence B1

+ fields through temporally and 
spatially varying RF excitation pulses [21, 27-37]. 

Achieving consistent and safe performance with such complex systems requires stable, well 
characterized and calibrated transmit array channels as well as good electromagnetic 
decoupling and/or a clear understanding of the interaction between the individual transmit 
elements. Various coil decoupling methodologies have been proposed [38-43] and have shown 
to yield excellent transmit array element separation. Recently decoupling methodology has been 
extended to include a number of promising directions incorporating novel RF amplifier designs 
and more sophisticated RF front-end designs. Some of these concepts hold promise to reduce 
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RF amplifier related costs and eventually allow for a higher number of transmit channels [18, 44-
48]. Similar to static magnetic field shimming (B0), RF transmit field (B1

+) shimming methods 
using transmit arrays for subject specific and region of interests (ROI) shimming have been 
introduced [49-54]. Optimum utilization of transmit array coils, also requires overcoming 
challenges for rapid B1 mapping, B1 optimization and various RF safety related implications [55, 
56]. Here promising methodology has been described [31, 54, 56-59] indicating that such 
challenges can be addressed. 

The most important component of a transmit array system is the RF coil and the related tune 
and decoupling circuitry. For transmit array RF coil designs, multichannel combination of 
standard RF coil circuitry elements such as various shapes of loop coils [14, 22, 60-64] or 
transmission lines[20, 23, 65-72] are typically used. Like TEM volume coils [73], transmission 
stripline arrays utilize the fact that at very high frequencies, radiation losses and coil coupling 
are elegantly addressed by circuit designs that incorporate a ground plane or RF shield into the 
resonance structure as an integral part of the circuitry [65, 66, 68, 74-77]. Furthermore, the 
broadband decoupling characteristic of transmission line elements [40, 65] due to the RF shield 
in close proximity reduce the difficulties of decoupling nearest neighbor elements. However, this 
potentially limits RF penetration and coupling to the sample. Similarly ultra high field loop coil 
arrays can be built with an RF ground plane in close proximity to improve reliability and limit 
interaction with the overall MR bore environment [60, 61, 64, 78, 79]. For coils in close proximity 
to the sample it has been shown that it is possible to built loop arrays without an RF ground 
plane [22, 62, 63]. For loop type structures it is also possible to achieve the desired individual 
RF feed points and decoupled resonant elements by following the “degenerated” birdcage 
circuitry design principles [80]. To improve longitudinal coverage and overall RF efficiency coils 
can be arranged in rows along the z-direction - this was initially proposed by Mao[52] and first 
demonstrated for stripline arrays by Adriany [69] and later confirmed for loop arrays by Gilbert 
Avdievich and Shajan [81-83]. Raaijmakers et al. [84] successfully extended the basic building 
blocks of loops and transmission lines towards radiative antenna elements and introduced 
dipole antennas for human torso applications. Raaijmakers also pointed out the importance of 
the complex poynting vector as an evaluation measure for effective RF energy flux. It was 
indeed demonstrated that efficient spin excitation and RF signal penetration with dipole 
antennas for sites located one or more wavelength deep could be achieved. More recently a 
number of researchers simulated and built modified dipole geometries; for example, Winter et 
al. described a bow tie antenna electric dipole array [85]. It has indeed been shown that both 
loops and dipole antennas have more favorable pointing vectors towards the center of the 
sample compared to striplines; which have significant energy flux in the longitudinal 
‘transmission’ direction. Since antennas in various designs and configurations are extensively 
described in the literature they are an exciting addition to nearfield coil resonant circuitry and 
hold great promise for ultra high field/frequency MR. It appears that dipoles in combinations with 
loops and/or stripline elements indeed hold great promise to emulate the ideal current 
patterns[86] and thus have the potential to yield optimal transmit efficiency and minimal SAR.   

The question of the benefits or drawbacks of a higher number of channels is currently under 
investigation. Simulation results by Mao [52],Wu [32] and Lattanzi [87] indicate general benefits 
for a higher number of channels in terms of the ability to influence field homogeneity, transmit 
efficiency and SAR. The extension in longitudinal coverage also immediately requires a higher 
number of transmit channels beyond the typically available eight channels of commercially 
available standard parallel transmit systems. One way to nominally increase the number of 
independent RF transmit coil elements is the utilization of mode based excitation patterns 
generated by a Butler matrix [88-90], however Butler matrices offer significantly less control. 
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There is some hope that arrays combined with lower cost “on coil” or “near coil” RF amplifiers 
are promising building blocks for more cost-efficient transmit arrays with higher number of 
channels [91].  
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