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Highlights 

1. Dynamic contrast enhancement modeling is influenced by data acquisition and choice of 
contrast agent. 

2. Semiquantitative measures of contrast enhancement, while easily obtained and affected 
by the underlying tissue physiology, do not have necessarily straightforward 
physiological meaning, as they reflect a combination of tissue properties, such as tissue 
blood volume, vascular permeability, and volume of leakage space, and depend on 
experimental variables. 

3. Quantitative DCE models are typically two-compartment models that estimate tissue 
perfusion and capillary permeability, permitting the straightforward physiological 
interpretation of vascular events in a tissue. However, special care has to be taken in the 
selection of the most appropriate model, in order to fulfill the underlying assumptions 
affected by contrast agent choice, tissue features, and data acquisition. 

Modeling Dynamic Contrast Enhancement (DCE) 

 Target Audience:   
Preclinical and clinical researchers, as well as clinicians, who analyze and interpret 
dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) data that have 
been acquired to evaluate vascularity  
 during tumor progression and in response to treatments (chemo- and/or radiotherapy), 
 in the course of developing novel acquisition techniques, or 
 in other diseases characterized by vascular abnormalities 
While this presentation focuses on the analysis and interpretation of DCE-MRI data, the 
basic principles can be applied to other imaging modalities, such as DCE computed 
tomography (CT), ultrasound (US), single-photon emission tomography (SPECT), and 
positron emission tomography (PET) studies (1 and references therein, 2). 

 Outcome/Objectives: The goal is to help the researcher to choose the most appropriate 
model to address a research/clinical question, based on the interpretation of calculated 
model parameters, and correspondingly choose the most suitable acquisition method, or 
vice versa choose an appropriate model for the analysis of existing DCE data.   

 Purpose: The goal of modeling dynamic contrast enhancement is to elicit – based on 
contrast agent uptake behavior – vascular parameters and/or changes that are specific to 
the disease and/or its treatment response, and also are of physiological/biological 
relevance. There have been a number of reviews, addressing data acquisition and 
analysis of contrast enhancement in magnetic resonance imaging (e.g. 1, 3-6). After a brief 
introduction of a variety of semiquantitative parameters that have been used to 
characterize contrast enhancement behavior, this lecture will focus on tracer kinetic 
models, applied either to voxel-by-voxel or regional average signal-to-time curves. 

 DCE Data Acquisition: Typically, dynamic contrast enhancement is measured after the 
bolus injection of a contrast agent (CA) into a vein, with the degree of enhancement 
related to the CA concentration. The CA of choice is often a small inert molecule (low 
molecular weight contrast agent (LMWCA)) that remains extracellular. However, studies 
with targeted contrast agents which are taken up and metabolized by cells are of interest 
for treatment studies7. Macromolecular weight CAs (blood pool agents, MMCA) stay not 
only extracellular but also stay inside of healthy blood vessels, thus, are uniquely suitable 
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to visualize the vasculature, and are often used to assess vascular permeability in 
diseases characterized by leaky vasculature, such as cancer 5, 8, 9. The qualities and 
features of various LMWCAs and MMWCAs have been reviewed in detail elsewhere5, 8, 9.  

The first pass of the CA uptake is characterized by the venous input function (VIF) / aterial 
input function (AIF)1, 3, 10, 11. After that the CA distributes throughout the vasculature, 
extravasates at sites of leaky blood vessels – such as in tumors – into the interstitium, and 
is ultimately cleared from the body. Rate and path (e.g. liver, kidney) of tissue and 
vascular clearance are dependent on the specific CA (e.g. size and type of CA)8, 12.  

The acquisition of dynamic contrast enhancement is dependent on the vascular features 
imaged and the contrast agent used. For example, measuring the VIF or AIF requires 
acquisition of DCE with high temporal resolution with a vein or artery in the field-of-view 
(FOV). When this is not practically feasible, which is often the case in preclinical models, 
population averages have been measured to be used in DCE data modeling1, 10. Following 
DCE in the region of interest (ROI) with sufficient temporal and spatial resolution to assess 
contrast enhancement in tissue regions of interest has become standard in the clinic and 
in preclinical studies3, 6. However, temporal and spatial resolutions are inversely related to 
each other, and both will depend on the imaging method’s sensitivity to reproducibly 
assess signal enhancement. DCE acquisition methods that make use of compressed 
sensing13, 14 may significantly improve temporal and spatial resolution15-17. In MRI, there 
are three acquisition methods to measure the contrast enhancement dynamically: (i) DCE-
MRI, which exploits the shortening of the T1 relaxation time of water protons near the CA, 
typically a Gd-based CA, (ii) dynamic susceptibility contrast (DSC)-MRI, which takes 
advantage of the effect of the CA (e.g. Gd-based CA or superparamagnetic iron oxide 
(SPIO) particles) on the T2 and T2

* relaxation time of nearby water protons18, and (ii) 
Arterial spin labeling (ASL) MRI, where magnetically labeled water protons serve as 
endogenous “CA”19. For the purposes of this lecture, the focus will be on DCE-MRI only, 
while where DSC-MRI and ASL are concerned, the interested reader is referred to the 
literature (e.g. 18-25).  

 Quantification and modeling of DCE-MRI data: The signal-to-time curves of DCE data 
follow qualitatively several distinct curve shapes: (i) fast wash in followed by fast wash out, 
(ii) fast wash in followed by either slow by slow accumulation, or little or no wash out 
during the acquisition time, (iii) slow accumulation of the CA, and (iv) no CA uptake 1, 3, 26.  

Easy to calculate and convenient semiquantitative measures of signal enhancement 
behaviors include for example the wash-in slope, wash-out slope, time-to-peak (TTP), and 
initial area under the enhancement curve at a specific time (e.g. 90 s) after injection of the 
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CA (IAUC90), (Figure 1A)3, 6. Also, fractions of voxels with a degree of enhancement 
above a given threshold, using for example muscle to obtain the background reference 
threshold, are calculated to characterize the ROI27. Though, these semiquantitative 
measures are affected by the underlying physiology, they do not necessarily have 
straightforward physiological meaning, as they reflect a combination of tissue properties, 
such as tissue blood volume, vascular permeability, and volume of leakage space, and 
depend on experimental variables3, 26. The advantage of this approach to analyzing DCE 
data is that it does not require the knowledge of an AIF (or VIF)3. 

Pharmacokinetic models: The underlying principle of tracer kinetic modeling is the same 
for any dynamic imaging modality and is based on standard tracer-kinetic theory of linear 
and stationary systems4, 28. However, the kinetic of the CA can vary considerably and thus 
details in the model have to be adjusted. As reviewed in detail recently by Sourbron and 
Buckley, for DCE-MRI based on T1-weighted imaging with a LMWCA (e.g. Gd-DTPA) a 
number of tracer-kinetic models have been developed1, 29. The assumptions are that the 
signal change measured after administration of the CA is directly related to the CA 
concentration in the voxel and independent of the injected concentration. The conversion 
of signal enhancement to CA concentration is hampered in DCE-MRI by its non-linear 
nature. Thus, often the relative signal enhancement over time S(t)/S0, with S0 depicting the 
precontrast signal, is used to approximate the CA concentration1. Another approach is to 
convert the signal S(t) into T1 relaxation rates R1(t), with the difficulty of having to account 
for errors induced by (i) assumptions for water exchange across physical barriers, such as 
vessel walls, (ii) measurement of an AIF, due to CA bolus dispersion, inflow effects of 
excited proton spins in the imaging voxel, or non-linearity of CA concentration to signal 
enhancement at high CA concentrations, and (iii) other factors, such as B1 
inhomogeneities1. 
Typically, inert, extracelluar CAs are used for DCE studies. Thus, a two-compartment 
model is used to describe the microcirculation in tissue (Figure 1B). The two 
compartments are the intravascular, extracellular space (blood plasma (BP), vp) and 
extravascular, extracellular space (interstitium, ve). The tissue vascularity can be 
described with the 4 independent parameters ve, vp, Fp, PS (Table 1), where Fp is the 
plasma flow and PS is the CA exchange rate between vp and ve, respectively. From these 
other hemodynamic parameters, such as Ktrans or MTT, can be derived (Table 1). Starting 
with the development of the first generation kinetic models to analyze DCE-MRI data by 
Hoffman-Brix, Tofts, and Kety30, 31 in the 1990s, various 2-compartment models of different 
complexity have been developed further by making differing assumption about CA 
exchange between and CA distribution within ve and vp

1, 29:  

Capillary or plasma models: The compartment model assumes that the CA 
concentration within a volume of interest is homogeneous and CA outflow is directly 
proportional to the CA concentration. The plug-flow model assumes that all CA molecules 
travel with the same velocity.  

Two-region exchange models: The 2-compartment exchange model assumes that the 
CA is homogeneously distributed within ve and vp, and that ve exchanges CA only with vp 
with the influx of CA into vp equal to the outflux. The tissue homogeneity model (TH) uses 
the plug-flow model to describe the plasma volume, while all other assumptions are 
identical to the 2-compartment exchange model. The adiabatic approximation to the tissue 
homogeneity model (AATH) assumes that the capillary walls are impermeable to CA and 
that ve only exchanges CA with vp on the venous end of the capillary. With these 
simplifying assumptions to the TH model result in differential equations that can be solved 
in the time-domain, contrary to the TH model. The distributed-parameter model assumes 
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the plug-flow system for the capillary bed, and that the CA exchange with ve, which is 
assumed to be comprised of a series of infinitesimal compartments, occurs only across the 
capillary wall, while there is no CA exchange between the compartments within ve. 

Often it is not possible to reliably model the 4 independent parameters, defining the 
models described above, based on the acquired DCE data. For example, in the brain an 
intact blood brain barrier inhibits the exchange of CA with ve and, thus, no information 
about ve is provided by the data. In such cases, additional assumptions are made reducing 
the number of independent variables, resulting in a variety of commonly applied models to 
fit DCE data: 

Two-compartment uptake models are defined by the parameters Fp, vp, and PS, as they 
assume that within the DCE data acquisition time the CA outflow from ve is negligible, 
based on a small PS and/or a large ve. 

The extended Tofts model assumes that Fp is infinite, resulting in a concentration of CA 
molecules that did not extravasate proportional to the arterial CA concentration, and is 
defined by the parameters vp, PS, and ve. 

The one-compartment model is defined by a volume v with a homogeneous CA 
distribution and the in- and outflow F. This model is suitable in situations where there is no 
CA exchange between the two compartments, or where the CA exchange is so fast that 
the compartments cannot be distinguished from each other and appear as one, or where 
the plasma volume vp is negligible. 

Table 1: Definitions of common hemodynamic parameters in DCE-MRI data modeling 

Parameter Definition Unit 

ve Interstitial volume ml 

vp  Intravascular plasma volume ml 

Fp Plasma flow, i.e. volume of plasma that enters a unit of tissue 
volume per unit time 

min-1 

PS Permeability surface area product, i.e. rate of exchange between ve 
and vp (number of CA molecules (mmol) that extravasate per unit of 
time (min) and plasma concentration (M) and tissue volume (ml) 

min-1 

E Extraction fraction, i.e. % of extravasating CA molecules % 

Ktrans Volume transfer coefficient (product of E and Fp) min-1 

MTT Mean transit time min 

The models described above assume that the water exchange across physiological 
barriers, such as the vessel wall or cell membranes, is fast. However, this may not be 
always correct. Thus, the shutter-speed model has been developed to account for 
experimental conditions where the transendothelial or transcytolemmal water exchange 
varies from the fast-exchange limit to the slow-exchange limit32, 33.  

For special cases, where an AIF or VIF is not readily available, reference region models 
have been developed to analyze DCE data34-36. These models use a well-characterized 
reference region, such as healthy muscle, in lieu of an AIF to calibrate signal intensity 
changes. 

Using the models described above to analyze DCE data on a voxel-by-voxel basis permits 
to evaluate tissue heterogeneity of hemodynamic parameters at the cost of the contrast-to-
noise ratio (CNR). While modeling average DCE curves of selected ROIs improves fitting, 
due to improved CNR, it potentially hides sub-regional vascular events by cancelling out 
enhancement loss due to CA washout in some voxels with enhancement increase due to 
CA accumulation in other voxels in the ROI. Identifying regions characterized by their 
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shape of contrast enhancement curves can improve the identification of sub-regional 
vascular events, while still benefitting from increased CNR of average contrast 
enhancement curves, and thus, promote relating modeled parameters to tissue/disease 
physiology and/or treatment response3, 37. 

 Discussion and Conclusion: The choice of model used to analyze DCE-MRI data 
depends on the tissue physiology (e.g. blood brain barrier, inhibiting extravasation of CA 
versus leaky tumor vasculature, leading to fast extravasation of CA into the interstitium), 
CA used (low molecular weight versus macromolecular weight), and DCE data acquisition 
(finding the optimal balance between time resolution, spatial resolution, total acquisition 
time, and CNR), as different assumption have to be fulfilled to calculate biologically 
meaningful hemodynamic parameters. Keeping the above in mind, DCE data modeling is 
a powerful tool to evaluate vascular events associated with disease physiology and 
treatment response.  
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