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Introduction: The characterisation of the gradient system impulse response can be used as prior knowledge in image reconstruction, parallel TX RF pulse design and
for pre-emphasis to correct for imperfections in the BO field that may arise. The gradient system has previously been characterised using field monitoring in
combination with frequency domain approaches [1-2]. Although this method can model the system quite accurately non-parametric models result, which means that
they do not have an analytic form. A field monitoring method for system identification of a gradient system using a parametric model is demonstrated. Parametric
models allow analogue pre-emphasis circuits to be more easily designed and also allow classical design methods for closed-loop feedback systems to be used, which
is particularly advantageous for multivariable systems such as gradient and BO shim systems. Furthermore the proposed method requires only one measurement for
each gradient thus being faster than previously described frequency domain approaches based on repeated measurements with chirp signal inputs [2] while still
obtaining a high prediction accuracy.

Method: The magnetic field was monitored using a custom-built 9.4T field camera that consisted of sixteen 1H NMR
probes mounted on a 250mm-diameter sphere (fig. 1) similar to the one described in [3]. The NMR probes were tuned
and matched (399.72MHz, 50Q) and were also decoupled using cable traps (more than 42dB isolation between any
two probes). The probes were susceptibility matched [3] and the water samples were doped with CuSO4 reducing the
T1 and T2 to approximately 80ms. The probes were operated in transmit/receive mode using a home-built 16 channel
interface (-50 dB isolation, 0.2 dB insertion loss per channel) and simultaneously excited by rectangular RF pulses of
duration 0.5ms. Since gradient fields cause de-phasing to occur relatively quickly, the TR between the pulses was 15ms.
The measurements were performed on a whole body 9.4T Siemens Magnetom scanner (Erlangen, Germany).

For any linear time-invariant system, the response to any input can be predicted using the impulse response function
(IRF) in the Laplace domain: out(s) = irf(s) = in(s). To determine the impulse response irf(s) gradient trapezoids
with a slew rate of 44mT/m/ms and an amplitude of 10mT/m
were used as inputs in(s). The FID signals were sampled at

300kHz. Related measurements were performed for X, Y and Table 1: Gradient system parameters
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Fig. 2: The derivative of the field coefficient during the gradient ramp _at . . . .
{with slew rate 44mT/m/ms) period of the x-gradient. The gradient amp A€~ for first-order. The slew rate is not fast enough to approximate a step response and modelling the

was started at 0.12ms. o ) output data using a step input would not be sufficiently accurate. As an alternative the ramp up of the
I:;:;E::L‘:::‘:::\;:ﬁ"'” Finfte, cifferent between o adjacent gradient was used to model the fast transient effects. The input was assumed to be a perfect ramp with a
gradient of 44mT/m/ms. Therefore by differentiating the field coefficient would give the step response to a

step input of amplitude 44mT/m. However the derivative of the ramp is very noisy if a digital derivative is performed. To obtain smooth derivatives of the output data,
a total-variation regularization algorithm was used with a regularisation parameter a = 5e-6 [4] (fig. 2). The

1:] ':xx: 150'";;'""“ | parameters to the second-order transfer functions were found by minimising the error between the
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E | = = Predicted 15mTm I/f' The gradient system had negligible cross-term effects which was expected because individual gradient coils
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% ej Actual Y-f0 i 1 single-input single-output systems. However there are cross-term effects from the x- and y-gradient to the
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E‘ 4r £ in table 1. To verify the results, the predicted output from the applied input (10mT/m with 44mT/m/ms slew
2r rate) was compared to the actual output. This was also done for gradient input amplitudes of 5mT/m and
0 15mT/m (fig. 3).
-2t Although previous system identification methods [1] can characterise the high frequency responses, these

0z 05 04 05 06 07 08 08 1 effects decay very quickly and thus the slower low frequency responses are the dominant components. So
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Fig: 31 Predictad sndachual fesponse o the waridiént for difeient although a second-order parameterisation captures the lower frequency components, this simplification is
amplitudes. The cross-terms from the x- and y-gradients (10mT/m) to valid (flg. 3).
the zero-order term (mT) are also shown. This method uses the ramp of the gradient which is normally very short and can therefore only measure fast

The input are gradients with different amplitudes (see figure legend) and

a slew rate of 44mT/m/ms. dynamics. To obtain an approximation of long term effects, such as eddy current effects, the gradient input

can be approximated as a step response.
Conclusion: Identification of the gradient system using parametric models can be performed quickly and efficiently. This accuracy of the models can be increased by
increasing the order of the model transfer functions. This method can also be used to characterise shim systems using higher order spherical harmonics and obtain a
multivariable transfer function which can be used in pre-emphasis or controller design.
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