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Introduction: The characterisation of the gradient system impulse response can be used as prior knowledge in image reconstruction, parallel TX RF pulse design and 
for pre-emphasis to correct for imperfections in the B0 field that may arise. The gradient system has previously been characterised using field monitoring in 
combination with frequency domain approaches [1-2]. Although this method can model the system quite accurately non-parametric models result, which means that 
they do not have an analytic form. A field monitoring method for system identification of a gradient system using a parametric model is demonstrated. Parametric 
models allow analogue pre-emphasis circuits to be more easily designed and also allow classical design methods for closed-loop feedback systems to be used, which 
is particularly advantageous for multivariable systems such as gradient and B0 shim systems. Furthermore the proposed method requires only one measurement for 
each gradient thus being faster than previously described frequency domain approaches based on repeated measurements with chirp signal inputs [2] while still 
obtaining a high prediction accuracy. 
Method: The magnetic field was monitored using a custom-built 9.4T field camera that consisted of sixteen 1H NMR 
probes mounted on a 250mm-diameter sphere (fig. 1) similar to the one described in [3]. The NMR probes were tuned 
and matched (399.72MHz, 50Ω) and were also decoupled using cable traps (more than 42dB isolation between any 
two probes). The probes were susceptibility matched [3] and the water samples were doped with CuSO4 reducing the 
T1 and T2 to approximately 80ms. The probes were operated in transmit/receive mode using a home-built 16 channel 
interface (-50 dB isolation, 0.2 dB insertion loss per channel) and simultaneously excited by rectangular RF pulses of 
duration 0.5ms. Since gradient fields cause de-phasing to occur relatively quickly, the TR between the pulses was 15ms. 
The measurements were performed on a whole body 9.4T Siemens Magnetom scanner (Erlangen, Germany). 
For any linear time-invariant system, the response to any input can be predicted using the impulse response function 
(IRF) in the Laplace domain: ݐݑ݋ሺݏሻ ൌ ሻݏሺ݂ݎ݅ ∗ ݅݊ሺݏሻ. To determine the impulse response irf(s) gradient trapezoids 

with a slew rate of 44mT/m/ms and an amplitude of 10mT/m 
were used as inputs in(s). The FID signals were sampled at 
300kHz. Related measurements were performed for X, Y and 
Z gradients. The phase coefficients were extracted from the 
FID phase measurements by fitting spherical harmonic 
functions to the acquired 16-channel data. Only zero- and 
first-order harmonics were used since only the gradient 
system was characterised (higher-order harmonics up to the 
3rd order can be used for shim systems characterisation with 
the current setup). Fitting of the spherical harmonic functions require the position of the probes to be known. 
This was calculated from the derivative of the phases after the gradient fields had settled and reached 
steady-state. Once the phase coefficients were calculated, the field changes were obtained by taking their 
derivative. 
 The gradient system was modelled as a multivariable system where the order of each transfer function was 
assumed to be at most second-order; so the equation for the IRF is ି݁ܣ௔௧ sinሺ߱ݐሻ for second-order and ି݁ܣ௔௧ for first-order. The slew rate is not fast enough to approximate a step response and modelling the 
output data using a step input would not be sufficiently accurate. As an alternative the ramp up of the 
gradient was used to model the fast transient effects. The input was assumed to be a perfect ramp with a 
gradient of 44mT/m/ms. Therefore by differentiating the field coefficient would give the step response to a 

step input of amplitude 44mT/m. However the derivative of the ramp is very noisy if a digital derivative is performed. To obtain smooth derivatives of the output data, 
a total-variation regularization algorithm was used with a regularisation parameter α = 5e-6 [4] (fig. 2). The 
parameters to the second-order transfer functions were found by minimising the error between the 
measured and predicted output. 
Results and Discussion: The transfer function parameters for the gradient self-terms are shown in table 1. 
The gradient system had negligible cross-term effects which was expected because individual gradient coils 
are well decoupled due to the shielding therefore the gradient system can be treated as three independent 
single-input single-output systems. However there are cross-term effects from the x- and y-gradient to the 
zero-order term. These effects were modelled with a first-order system and the parameter values are given 
in table 1. To verify the results, the predicted output from the applied input (10mT/m with 44mT/m/ms slew 
rate) was compared to the actual output. This was also done for gradient input amplitudes of 5mT/m and 
15mT/m (fig. 3). 
Although previous system identification methods [1] can characterise the high frequency responses, these 
effects decay very quickly and thus the slower low frequency responses are the dominant components. So 
although a second-order parameterisation captures the lower frequency components, this simplification is 
valid (fig. 3). 
This method uses the ramp of the gradient which is normally very short and can therefore only measure fast 
dynamics. To obtain an approximation of long term effects, such as eddy current effects, the gradient input 
can be approximated as a step response. 

Conclusion: Identification of the gradient system using parametric models can be performed quickly and efficiently. This accuracy of the models can be increased by 
increasing the order of the model transfer functions. This method can also be used to characterise shim systems using higher order spherical harmonics and obtain a 
multivariable transfer function which can be used in pre-emphasis or controller design. 
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