

Temperature simulations for the inverse boundary element gradient coil design method

Michael Stephen Poole¹, Clemente Cobos Sanchez², and N Jon Shah^{1,3}

¹INM-4, Forschungszentrum Jülich, Jülich, Germany, ²Ingeniería en Automática, Electrónica, Arquitectura y Redes de Computadores, Universidad de Cádiz, Cádiz, Spain, ³Department of Neurology, RWTH Aachen, Aachen, Germany

Target Audience

Gradient coil designers

Purpose

To model the temperature distribution inside gradient coils of arbitrary geometry. The maximum temperature in a gradient coil is a limiting factor in its maximum duty cycle. In this work we develop a model of temperature for the inverse boundary element¹ (IBEM) coil design process. Simulation allows the temperature distribution to be estimated for numerous coil designs. Accurate temperature simulation relies on experimental tuning of the simulation parameters² for significantly different coil materials and structures.

Methods

The temperature above ambient, T^* , can be modelled by a heat equation² in which the rate of change of temperature is damped by the heat capacity of the object, the dissipation of heat throughout the object is governed by the Laplacian of the temperature and heat is lost from the object by a cooling term proportional to T^* . An ohmic heating term is included for the power dissipated as heat energy due to large current densities, \mathbf{j} .

$$c_h \rho_d \frac{\partial T^*}{\partial t} = k_c \nabla^2 T^* + \frac{\rho_r}{w^2} \mathbf{j} \cdot \mathbf{j} - \frac{h_t}{w} T^*, \quad (1)$$

where c_h is the specific heat capacity, ρ_d is the mass density, k_c is the thermal conductivity, ρ_r is the electrical resistivity, w is the coil layer thickness and h_t is the cooling coefficient. Careful choice of these parameters was shown to be critical for correct prediction of measured temperatures³.

Equation (1) is a partial differential equation that must be discretised. In boundary element method (BEM) based coil design techniques, the surface is often modelled as flat triangular elements in which uniform \mathbf{j} can flow. The coil design is usually parameterised in terms of stream-function of the current density, which is a piecewise-linear scalar function on the mesh defined by a set of values, ψ , at the mesh nodes. The discrete current density is defined in each triangle, $\mathbf{j} = J\psi$, which here were interpolated back to the mesh nodes. In this work we use the conformal discrete Laplacian operator, L , in place of its continuous counterpart, ∇^2 , where $L = D - W$, $D = \text{diag}_i(\sum_j W_{i,j})$ and $W_{i,j} = \cot(\alpha_{i,j}) + \cot(\beta_{i,j})$. $\alpha_{i,j}$ and $\beta_{i,j}$ are the angles opposite the edge connecting nodes i and j .

The steady-state temperature, T_{ss}^* , can be solved for with a matrix equation since the time differential becomes zero:

$$T_{ss}^* = -\frac{\rho_r I^2}{w} (w k_c L - H_t)^{-1} (J\tilde{\psi})^2 \quad (2)$$

where $I^2(J\tilde{\psi})^2 = \mathbf{j} \cdot \mathbf{j} I$ is the current and $\tilde{\psi}$ is the normalised ψ . Alternatively, an Euler time stepping scheme can be used to discretise time: $\partial T^*/\partial t \rightarrow (T^{(\ell+1)} - T^{(\ell)})/\tau$.

Results

Figures 1 and 2 demonstrate the method using the parameters c_h , ρ_d , k_c , ρ_r , w , h_t with values $385 \text{ J kg}^{-1} \text{ K}^{-1}$, 8960 kg m^{-3} , $401 \text{ W m}^{-1} \text{ K}^{-1}$, $1.68 \times 10^8 \Omega \text{ m}$, 4 mm , $153.5 \text{ W m}^{-2} \text{ K}^{-1}$ respectively. The coil in Fig. 1 was designed with the IBEM¹ by minimising the resistance. The maximum⁴ and sparsity⁵ of $|\mathbf{j}|$ was minimised for the coil in Fig. 2. Five thousand time points were simulated in ~ 2 s. The current was simulated to be on for 250 s and off for a further 250 s.

Discussion

These simulations are sensitive to the thermal parameters and should be approximately matched to experimental results, as was previously reported³. It is expected that this forward modelling can be inverted to provide a method of designing minimum maximum temperature coils⁶. It should also be possible to include other partial differential equations of similar form into the BEM, such as vibrational dynamics. Our simulations show heating over a few minutes because the simulation parameters match single layer prototypes used for validation in previous work.

Conclusion

We have demonstrated thermal simulations for the IBEM gradient coil design. The method should be compared to experiment and then used to predict temperatures of new coil designs.

References

- ¹S Pissanetzky, *Meas Sci Technol* (1992) **3** p667,
- ²P While et al., *Concepts Magn Reson B* (2010) **37B** p146, ³M S Poole et al., *MRM* (2012) **68** p639, ⁴M S Poole et al., *J Phys D* (2010) **43** 095001 (13pp), ⁵M S Poole and N J Shah, *Proc ESMRMB* (2013) **30** p406, ⁶P While et al., *MRM* (2013), **70**, p584, ⁷dx.doi.org/10.6084/m9.figshare.847301, ⁸dx.doi.org/10.6084/m9.figshare.847302

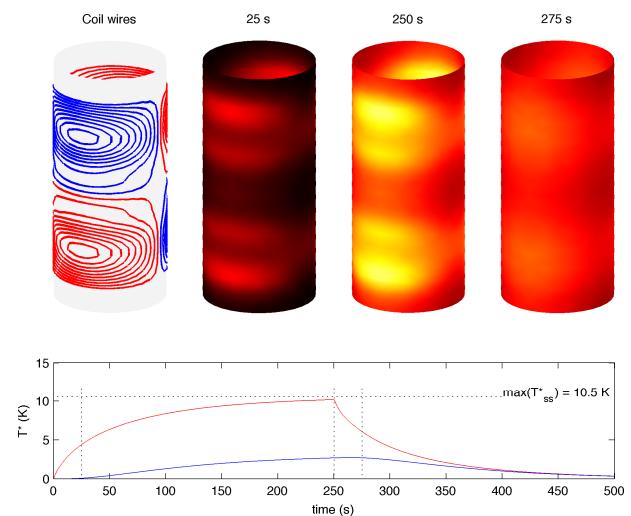


Figure 1. Heating and cooling of a small-scale prototype X gradient coil. Top left shows the wire centres of the coil, where red wires have reversed current sense with respect to blue. Top right are 3 temperature distributions plotted over the surface just after I is switched on, close to thermal equilibrium and shortly after I is switched off. Bottom graph shows the maximum (red) and minimum (blue) surface temperatures over time. Black dotted lines show the times of the temperature plots above and the thermal equilibrium temperature using Eq. (2). An animation is available online⁷.

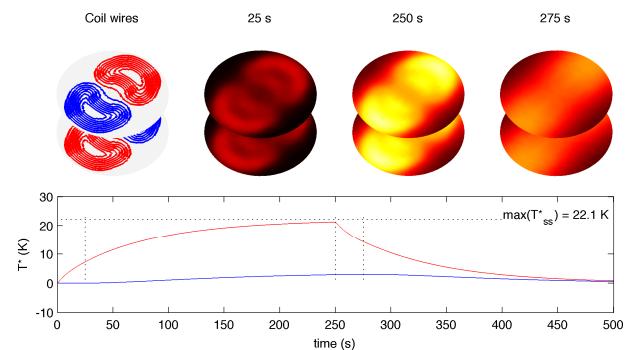


Figure 2. Heating and cooling of a prototype X gradient coil for a portable permanent magnet system. An animation is available online⁸.