Integrated Image Reconstruction and Gradient Nonlinearity Correction
Joshua D. Trzasko', Shengzhen Tao', Yunhong Shu!, Armando Manduca', and Matt A. Bernstein'
'Mayo Clinic, Rochester, MN, United States

Target Audience: Image reconstruction scientists and physicists involved in quality control.

Purpose: Due to engineering limitations, the gradient fields used for spatial encoding in clinical magnetic resonance imaging (MRI) are never truly
linear over the imaging field-of-view (FOV). As standard MRI signal models presume gradient linearity, reconstructed images exhibit geometric
distortion unless gradient deviations are properly accounted for. Given a priori knowledge of the gradient field, geometric distortion due to gradient
nonlinearity is typically corrected via image-domain interpolation [1,2]. Although this retrospective approach, commonly termed gradient distortion
correction or “GradWarp”, is straightforward, it does not explicitly account for the effects of finite sampling, undersampling, or noise, and may con-
sequently degrade spatial resolution. In this work, we propose a correction strategy that accounts for gradient nonlinearity during — rather than after —
k-space to image reconstruction. Although prospective correction has been considered in situations when gradients are intentionally distorted for
encoding purposes (e.g., PATLOC [3]), this approach has not been considered for the more common scenario where ideally linear gradients are not
performing as desired. As will be shown, prospective compensation lessens the tradeoff between geometric accuracy and spatial resolution.

Methods: In the presence of gradient nonlinearity, the measured MRI signal can be modeled as g[k] = fﬂ f (f)eia[k]'z(i)d—f + n[k] (Eq. 1), where

[ is the (continuous) target signal, X denotes (true) spatial position, @ is the sample frequency, A is the (assumed a priori known) spatial distortion
function due to gradient nonlinearity, and n is complex Gaussian noise. As only a finite number of samples is collected, the target signal, f, is approx-
imated via finite series representation, f(X) =~ Y;co u[i]b(X — T[i]), where u are display coefficients, b is the voxel model, and T is voxel position.

Presuming a Dirac delta voxel model, (Eq. 1) resorts to g[k] = ¥;co u[ile/@ 2G4 n[k] = Au[k] + n[k] (Eq. 2). The forward operator, A, can
be efficiently implemented for Cartesian and non-Cartesian sampling using type-1 and type-3 non-uniform fast Fourier transforms (NUFFT) [4],
respectively, and readily embedded into any reconstruction method based on solving an optimization problem of the following abstract form:
{ti} = argmin {AP(w) + ||Au — gl|3} (Eq. 3), where P() is a penalty functional. To demonstrate the proposed strategy, the American College of
Radiology (ACR) quality assurance (QA) phantom was scanned at 3.0 T (GE v16, T;-weighted RF spin echo, FOV=25cm, Nx=Ny=256, 11 5 mm
slices, TR/TE = 500/20ms, FA=90°, ZOOM gradients, 8-channel array). Raw complex MRI data was then retrospectively 2x undersampled (random-
ly) along the phase-encoded direction. CLEAR [5]
(iter=50, blocksize=8, A=1e5) was adopted as the
reconstruction platform, such that P in Eq. 3 was
defined as a locally low-rank (LLR) penalty func-
tional. A was implemented using a type-1 NUFFT
with 1.25x oversampling and a width J=5 Kaiser-
Bessel kernel. Image reconstruction was performed
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assuming no spatial distortion (i.e., A(¥) = ) and
with a distortion map generated using vendor-
provided gradient (i.e., A(¥) # X). As a baseline for
comparison, geometric distortion in the former re-
construction was also retrospectively corrected via
image-domain interpolation (cubic spline).

Results: Fig. 1 shows reconstruction results for two
slices of the ACR phantom dedicated for assessing
geometric accuracy and spatial resolution. The results
assert that retrospective (“CLEAR+GradWarp”) and
prospective (“Proposed”) correction both effectively
combat geometric image distortion evident in the
uncorrected image (“CLEAR”), but retrospective
correction also degrades spatial resolution during this
correction while the proposed strategy does not. This
difference is particularly evident when comparing the
1.0/1.1 mm resolution inserts of different results.
Discussion: Gradient nonlinearity correction is rou-
tinely performed in clinical MRI, and any improve-
ments to this process may offer widespread benefit.
The ability of prospective correction to preserve spa-
tial resolution may be particularly beneficial for longitudinal MRI studies [6] looking for subtle image changes, and in the design of novel scanner
architectures based on fast but sensitive gradients systems [7]. That the proposed approach readily integrates into existing MRI reconstruction strate-
gies should also facilitate its adoption; however, additional effort is needed to further reduce the computational cost of the added NUFFT operations.
Conclusion: Prospectively accounting for distortion due to gradient nonlinearity during — rather than after — k-space to image reconstruction lessens
the tradeoff between geometric accuracy and spatial resolution inherent to retrospective correction strategies.
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Fig. 1) Example reconstructions of the ACR phantom at 2x undersampling. Circle overlays (green) highlight
geometric distortion due to gradient nonlinearity. Arrows (red) highlight the effect of gradient nonlinearity
correction on 1.0 and 1.1 mm spatial resolution inserts.
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