

Extravascular extracellular space fraction measurement by DSC-MRI: a theoretical study

Yikang Liu¹, Weiping Ding¹, and Bensheng Qiu¹

¹Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China

Introduction:

The unclear T_1 and T_2^* effect dominance resulting from the contrast agent (CA) leakage in dynamic susceptibility contrast (DSC)-MRI weakens linearity between ΔR_2^* and CA concentration. But endeavor has been made to measure relative cerebral blood volume (rCBV) and blood-brain barrier (BBB) permeability by DSC-MRI, such as Weisskoff model and its modified forms [1]–[4]. However, no one, to our knowledge, has discussed the relation between extravascular extracellular space (EES) fraction V_e and parameters deduced from Weisskoff model. In this study, our results from simulation demonstrated that the ratio of K_1 and K_2 in Weisskoff model was linear to V_e , thus illustrating a potential approach to measure relative V_e by DSC-MRI.

Methods:

A simulation tool was developed in Matlab (The Mathworks Inc.) and COMSOL Multiphysics (CnTech Co.), based on approach proposed by Pannetier *et al* (2013)[5], which comprised blood flow, CA leakage, CA diffusion in EES, intrinsic and CA-induced R_1 and R_2 relaxations, magnetic field perturbations, and the diffusion of the water protons. A voxel was modeled as a 100*100 μ m surface with cells and vessels modeled as circles randomly distributed. The perturbation of the magnetic field was averaged over 3 orthogonal orientations [5]. The diameter of vessels was set as 4 μ m according to that of microvessels in grey matter [6] and distribution of cell diameters were set according to axon diameter distribution of optical nerves [7]. Arterial input function (AIF) was acquired from *in vivo* DSC data fitted to gamma-variate function and cerebral blood fraction V_b was 3.8%[5]. Transfer coefficient K_{pe} of vascular wall was set as 0, 0.001, 0.009, 0.016, 0.036, and 0.064, and V_e was set as 0.2 to 0.8 with increment of 0.1. Both included the range reported in tumors[5][8]. And a preload of 0.01 mM was implemented. In addition, single-shot gradient echo sequence was used for simulation with TR = 1500ms, TE = 10ms, and flip angle = 90 degrees, lasting for 100s. Susceptibility maps were converted to magnetic field perturbation maps by the Fourier transform approach and MR signals were simulated by Bloch equations under 4.7 T [5]. Five simulations were conducted for each combination of the parameters. The ΔR_2^* curves of tissue and AIF were generated from MR signals by $\Delta R_2^* = \ln(S(0)/S(t))/TE$, with V_b considered for AIF. Then, the curves were fitted into the Weisskoff model through Levenberg-Marquardt algorithm, and linear relationship between V_e and K_1/K_2 was evaluated by Pearson's linear correlation coefficient.

Results:

Fig. 1 illustrates the relationship between K_1/K_2 and V_e for $K_{pe} = 0.001, 0.009, 0.016, 0.036$, and 0.064 respectively. Pearson's coefficients and parameters of linear regression equation $K_1/K_2 = m*V_e + b$ for each circumstance are displayed in Table 1, which manifest linear correlation between K_1/K_2 and V_e and their stable relationship. Fig. 2 shows the magnetic field perturbation ΔB maps of $V_e = 0.2$ and $V_e = 0.8$ when B_0 parallels and orthogonal to the surface respectively.

Discussion:

T_2^* effect is on account of dephasing of MR spins caused by magnetic field perturbation. As shown in Fig. 2, higher V_e leads to larger susceptibility interface area and thus more significant T_2^* effect. On the other hand, higher V_e results in a slower extravasation process and thus undermines T_1 effect. As a result, the absolute value of K_1/K_2 , which is positively correlated to T_2^* effect and negatively correlated to T_1 effect, is lower with higher V_e . Furthermore, the relationship between V_e and K_1/K_2 is almost invariant for different permeability, as shown in Fig.1 and Table 1, the reason of which may be as follows. First, the CA in EES causes T_1 and T_2^* effects at the same time, which contradict with each other, then the amount of CA may have weak relation with MR signal. Second, the integral of tissue response function in Tofts model[9] $K_{pe} * e^{-K_{pe}t}$ on timespan of 0 to 100s varies little with a certain range of K_{pe} , for example, 0.907 for $K_{pe} = 0.025$, 0.969 for 0.05, and 0.951 for 0.1, effect of K_{pe} therefore diminished.

Conclusion:

The stable relationship between K_1/K_2 and V_e under conditions of different permeability and cell/vessel distribution has been manifested by numeric simulation. As a consequence, Weisskoff model could be utilized for generating relative V_e map by DSC-MRI and clinical data is expected to further prove the theory.

References:

- [1] R. Leigh *et al*, *PLoS One*, vol. 7, no. 12, 2012.
- [2] J. L. Boxerman *et al*, *AJNR Am J Neuroradiol*, vol. 27, no. 4, 2006.
- [3] A. Bjornerud *et al*, *J. Cereb. Blood Flow Metab.*, vol. 31, no. 10, 2011.
- [4] H. L. Liu *et al*, *Med Phys*, vol. 38, no. 2, 2011.
- [5] N. A. Pannetier *et al*, *PLoS One*, vol. 8, no. 3, 2013.
- [6] A. D. and D. Boas, *Neurovascular Imaging*. Frontiers E-books.
- [7] Y. Assaf *et al*, *Magn. Reson. Med.*, vol. 59, no. 6, 2008.
- [8] A. Singh *et al*, *J Magn Reson Imaging*, vol. 29, no. 1, 2009.
- [9] P. S. Tofts *et al*, *J Magn Reson Imaging*, vol. 10, no. 3, 1999

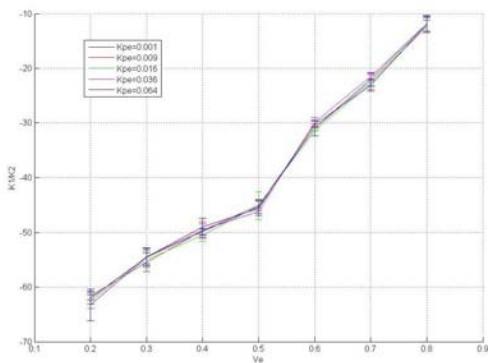


Figure 1. Relationship between K_1/K_2 and V_e for different permeability

K_{pe}	R	P	m	b
0.001	0.986	4e-5	83.59	-81.25
0.009	0.988	3e-5	83.04	-81.15
0.016	0.987	4e-5	83.43	-81.54
0.036	0.985	6e-5	84.87	-81.85
0.064	0.988	3e-5	84.05	-81.68

Table 1. Relationship between V_e and K_1/K_2 . R and P are Pearson's coefficients; m and b are parameters in linear regression equation.

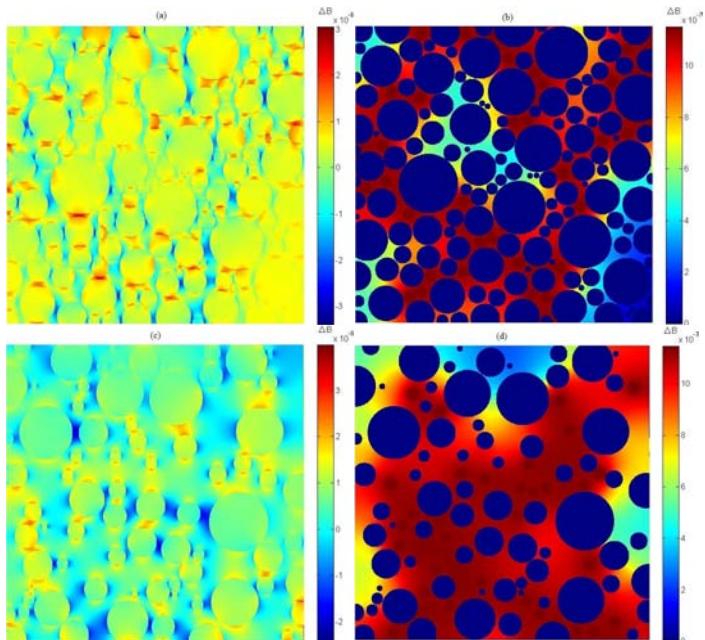


Figure 2. Magnetic field perturbation map when $K_{pe} = 0.009$. Magnetic field is parallel to surface in the left column, while orthogonal in the right. For upper row, $V_e = 0.2$; for lower row, $V_e = 0.6$. It is shown that when V_e is smaller, inhomogeneity of magnetic perturbation is more severe, which leads to greater T_2^* effect.