Tau_b: A Metabolic Neuroimaging Biomarker

William D. Rooney¹, Xin Li¹, John W. Grinstead², Edward A. Neuwelt³, and Charles S. Springer, Jr. ¹

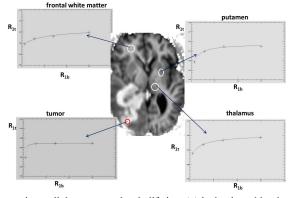
¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States, ²Siemens Healthcare, Portland, Oregon, United States, ³Blood-Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon, United States

Introduction: Capillary lumen water is "well-mixed" (1). During passage through a typical $^{1}\text{H}_{2}\text{O}$ MRI voxel [(1 mm) 3], H_{2}O molecules exchange into and out of blood cells, and collide with the capillary wall, many times. The escape probability [equilibrium extravasation] is the inverse of the mean H_{2}O molecule lifetime in a blood capillary (τ_{b}). $\tau_{b} = 0.5 \cdot r \cdot (P_{W})^{-1}$; with r and P_{W} the voxel *mean* capillary radius and water permeability coefficient, respectively (2). With sufficient compartmentalized paramagnetic contrast agent concentration, [CA], the $^{1}\text{H}_{2}\text{O}$ inversion recovery (IR) is non-mono-exponential and compartmental H_{2}O lifetime (τ) values can be determined (2,3). But it is likely impossible to reach the required blood [CA] *in vivo* (4). However, even with mono-exponential IR, if [CA] is *varied*, τ values can be measured (2,4). Originally, blood [CA] was deliberately varied (animal model) to obtain τ_{b} (5). Then it was shown that, in the human brain, a single CA bolus, (Dynamic-Contrast-Enhanced) DCE-MRI, is sufficient because [CA] increases and decreases during the bolus passage: CA does not extravasate in the normal brain (6). But the approved monomeric Gd(III) chelate CAs do extravasate in brain tumors. Here, we use a superparamagnetic iron oxide (SPIO) nanoparticle CA that can be bolus injected (7). During the first pass, and indeed the first hour, it does not extravasate even from tumor capillaries. We use the 2-site-exchange (2SX) shutter-speed paradigm (SSP) DCE-MRI analysis (6).

Methods: DCE-MRI quantitative T_1 (q T_1) data were acquired on a Siemens 3T Tim Trio instrument with a multislice 2D GRE-EPI based sequence with a (128)² image matrix, resulting in nominal (2 mm)³ isotropic resolution (8). Points were obtained in the CA steady-state before, and after IV injections of Ferumoxytol [Fe-tol; MW = 750 kDa] (7), fractionated into 3 doses [1:2:4] totaling 4 mg(Fe)/kg. The q T_1 acquisitions were initiated 120 s after each Fe-tol injection, during the plasma CA steady-state period; *i.e.*, when plasma [CA] was uniform and constant: [CA] was larger after each successive injection. This was a multi-day study, and a similar protocol using the momomeric GdHPDO3A CA, was conducted 24 hr prior to the Fe-tol MRI session. Six *glioblastoma multiforme* [GBM] subjects consented. Data are also reported from a separate 7T study of 2M/4F healthy controls using GdHPDO3A.

Results: Fig. 1 displays sample data from a 52 y M GBM subject. In the center is an axial qT₁-w image obtained 30 min after GdHPDO3A injection. The CA-enhancing tumor is clearly visible at the lower left. Inset are data (crosses) obtained from 4 representative ROIs [frontal WM, thalamus, putamen, and tumor; ellipses] during Fe-tol injections of this subject. Each plot shows the R_{1b}-dependence of R_{1t}. [R₁ ≡ T₁⁻¹: R_{1b} is taken at 4 times from a sagittal sinus ROI, each R_{1t} at the same 4 respective times from the ROI indicated]. If the tracer pharmacokinetic paradigm [τ_b → 0] obtained, the R_{1t},R_{1b} plot would be linear. None are, and all are well fitted by 2SX SSP expression (4,6) curves with τ_b, v_b, and R_{1exv} varied [v_b is the blood volume fraction, R_{1exv} the pre-exchange extravascular ¹H₂O R₁]. The population- and ROI-averaged v_b and τ_b values are given in the **Table** [NA, normal-appearing]. For comparison, the normal WM and GM healthy control biomarkers are

Table 1 Human Brain	ROI SSP Values	
	V _b	τ _b (s)
Healthy Controls (n = 6) ^a		
NWM	0.014	0.345
NGM	0.031	0.403
Glioblastoma (n = 6) ^b	•	•
NA-frontal WM	0.008	0.44
NA-thalamus	0.017	0.38
NA-putamen	0.012	0.43
tumor	0.046	5.55


also listed. In the GBM brain, the v_b values are generally smaller than normal, except in the tumor. The τ_b values in the NA-GBM brain are rather normal, and most definitely non-zero. However, in tumor tissue τ_b is increased by an order-of-magnitude. Is this remarkable increase because r is increased, P_{W}' is decreased, or both? In separate analyses, we have found - for cells in suspension, and in breast tumors and in myocardium $in\ vivo$ - the

M-putamen | 0.012 | 0.43 | 0.44 | 0.55 | 0.046 | 5.55 | 0.046 | 5.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.55 | 0.046 | 0.046 | 0.55 | 0.046 | 0.0

tonimant P_W (active) component in the MS brain, where τ_b is also increased: 1.) PMRSI shows PCI and 2.) ²³NaMRSI shows tissue Na content [likely Na_i] is increased [~28%] in MS brain (9), and 3.) τ_b is significantly increased [almost doubled] in MS lesions (unpub.). It is well-known that MS lesion capillaries are CA-permeable, and those in GBM tumor tissue even more so (7). There is little doubt this is due to widened para(endothelial)cellular pores. Thus, paracellular water extravasation [a P_W (passive) pathway] must also increase. But this would make τ_b decrease. The conclusion is inescapable that the large τ_b increase observed must be dominated by a large P_W (active) decrease in the GBM tumor.

Discussion: The mean intracellular water molecule lifetime $[\tau_i]$ is dominated by active trans-membrane water cycling [10¹² H₂O molecules/s/cell] (3). This process accompanies the active trans-membrane osmolyte cycling paced by the driving cell membrane ATPase transporter. For mammalian cells, this is the Na⁺/K⁺ATPase [NKA] pump, possibly the most important enzyme in biology. The τ_i magnitude is sensitive to the ATP_i and K_0 substrates of, and to specific inhibitors of, the driving ATPase transporters (3,10,11). Fig. 2 is a cartoon of the "gliovascular unit" (12). Endothelial [gray], neuroglial [pink], and neuronal [blue] cells, in proximity with synaptic dimensions, act in exquisite metabolic synchrony (12,13). Active trans-membrane water cycling processes are indicated with stars. A cascade of these could constitute the Pw'(active) pathway [2d]. Possible Pw'(passive) pathways, simple transcellular H₂O diffusion across cell membranes [2b], transcellular transport through membrane aquaporin H₂O channels and/or transcellular leakage through membrane transporters [2c] are also shown. The paracellular H₂O pathway is shown as [2a], but this caries a miniscule flux compared with transcellular pathways. Our results strongly suggest that the P_W (active) pathway [2d] dominates the τ_b magnitude. If this changes in parallel with changes in "Magistretti Metabolic Mechanism" [2e,f,g] fluxes (12,13), τ_b provides a high-resolution MRI biomarker sensitive to changes in cerebral neuronal activity. The lower the NKA activity, the larger the τ_b value. If this is true, cells in the GBM tumor have extremely slow NKA activity. Grant Support: NIH: RO1-NS040801; UO1-CA154602; R44 CA180425.

References: 1. Strijkers, et al, MRM 61:1049-1058 (2009). 2. Labadie, et al, JMR B 105:99-112 (1994). 3. Zhang, et al, Biophys J 101:2833-2842 (2011). 4. Landis, et al, MRM 42:467-478 (1999). 5. Schwarzbauer, et al, MRM 37:769-777 (1997). 6. Rooney, et al, PISMRM 11:2188 (2003). 7. Gahramanov, et al, Int J Radiat Oncol Biol Phys 79:514-523(2011). 8. Grinstead, Rooney, PISMRM 16:3084 (2008). 9. Inglese, et al, Brain 133:847-857 (2010). 10. Poirier-Quinot, et al, PISMRM 14:1176 (2006). 11. Zhang, Balschi, PISMRM 21:4045 (2013). 12. Abbot, et al, Nat Rev Neurosci 7:41-53 (2006). 13. Lee, et al, Nat 487:443-448 (2012).

T_b

H_O

Figure 2. Gliovascular unit water exchange mechanisms determining mean water molecule lifetimes in blood (τ_b , beige), interstitium (τ_o , aqua), and endothelial (τ_i ', gray), neuroglial (τ_i , pink), and neuronal (τ_i '', blue) cell spaces. The equilibrium paracellular (a), simple diffusion (b), facilitated transcellular (c), and active water cycling (d, stars) pathways are indicated, as are "Magistretti steps" (e.f.g).