Implications of unequal interstitium and plasma contrast reagent relaxivities in pharmacokinetic analysis of DCE-MRI

Xin Li¹, Yu Cai¹, Brendan Moloney¹, Wei Huang¹, Mark G. Garzotto^{2,3}, Mark Woods¹, and Charles S Springer¹

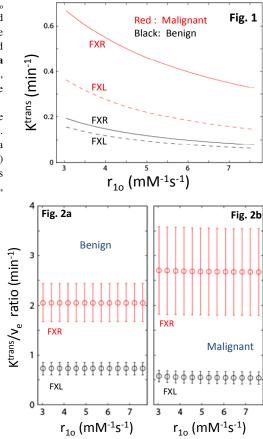
¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States, ²Portland VA Medical Center, Portland, Oregon, United States, ³Urology, Oregon Health & Science University, Portland, Oregon, United States

Purpose: Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) indirectly detects contrast reagent (CR) concentration through water proton R_1 relaxation rate constant [$\equiv T_1^{-1}$] changes. Within a single tissue compartment, a linear relationship is assumed, $\Delta R_1 = r_1 \cdot [CR]$. The slope r_1 , the longitudinal relaxivity, quantifies the CR potency to change water proton T_1 . It is current practice to assume that r_1 is the same in blood plasma and all interstitial compartments. However, there is evidence suggesting a potential increases in the interstitium r_1 (1, 2). Based on human prostate data, we demonstrate the implications of differences of r_{10} (interstitium relaxivity) to r_{10} (plasma relaxivity) values on DCE-MRI pharmacokinetic parameters.

Methods: Prostate DCE-MRI data were acquired on 13 subjects with a Siemens TIM Trio (3T) system under an IRB-approved protocol. RF transmitting was through the whole body coil and RF receiving was with a combination of Spin Matrix and flexible Body Matrix coil arrays. The DCE-MRI acquisition employed a 3D TurboFLASH pulse sequence with a 256*144*16 matrix size and a 360*203 mm² FOV, resulting in (1.4)² mm² in-plane resolution. Other parameters are: slice thickness: 3 or 3.2 mm; TR/TE/FA: 5.0 ms/1.57 ms/15°, image frame sampling interval: 6.3 s. A 0.1 mmol/kg CR (ProHance; Bracco) bolus was administered starting ~38 s after initiation of the DCE-MRI sequence. In general, the protocol of (3) was used. All subjects subsequently underwent standard ten-core prostate biopsies with ultrasound guidance. Malignancies were found in 5 subjects and the remaining were benign cases. One region of interest (ROI) was selected for each subject, resulting in 5 malignant and 8 benign ROI time-courses. Simulations were performed on ROI data from the subjects (one ROI per subject). r_{1p} is assumed to be 3.8 mM⁻¹s⁻¹. Eq. (1) describes the interstitial CR concentration time-course, [CR_o](T). Ignoring the blood contribution, the associated tissue concentration, [CR_c](t) = ΔR₁(t)/r₁₀ = [CR_o](t)·v_e, is related to the DCE-MRI time-course. Here, ΔR₁₁(t) is the time-course of tissue R₁ change [=R₁₁(t) - R₁₁(0)], and v_e is the extravascular, extracellular volume fraction. Thus, Δ R₁₁(t) = r_{1o}·[CR_o](t)·v_e. Based on this expression and the expression for [CR_o] given by Eq. (1), it is obvious that simultaneously fitting r_{1o}, v_e, and K^{rans} (CR extravasation transfer constant) to the measured DCE-MRI time-course is not feasible. Thus, simulations were carried out by fitting pharmacokinetic parameters with r_{1o} fixed at 13 different values (from 0.8·r_{1p} to 2.0·r_{1p} with a step-size of 0.1·r_{1p}). The standard fast-exchange-limit (FXL) Tofts model (4) was used to obtain K^{trans} and v_e values, an

$$[CR_0](T) = K^{trans} \cdot v_e^{-1} \cdot \int_0^t [CR_p](t) \cdot \exp(-K^{trans} \cdot v_e^{-1} \cdot (T-t)) \cdot dt$$

$$(1), \qquad \text{where the plasma CR concentration, } [CR_p] = \{R_{1b}(t) - R_{1b}(0)\} / \{(1 - h_v) \cdot r_{1p}\} : (1 - h_v) \cdot r_{1p}\} = \{R_{1b}(t) - R_{1b}(0)\} / \{(1 - h_v) \cdot r_{1p}\} : (1 - h_v) \cdot r_{$$


 $R_{1b}(t)$ is the blood R_1 time-course, $R_{1b}(0)$ is blood R_1 before CR, and h_v is the microvascular hematocrit. Inserting the $[CR_p]$ expression into the $\Delta R_{1t}(t)$ equation (using Eq. (1) for $[CR_o]$), it is easy to see the r_{1o}/r_{1p} ratio (5) in the $\Delta R_{1t}(t)$ equation. r_{1o}/r_{1p} has been assumed to be 1 in kinetic modeling of DCE-MRI data.

Results: Fig. 1. shows representative malignant (red) and benign (black) K^{trans} changes with increasing r_{1o} (r_{1p} fixed at 3.8 mM $^{-1}s^{-1}$ for 3T). Each ROI data set was fitted with FXR (solid curve) and FXL (dashed curve). The best fitted values from the 20 different initial guesses are plotted. The K^{trans} values decrease with r_{1o} increase. The averaged K^{trans} / v_e ratios (with standard errors) of the 8 benign ROIs are plotted against r_{1o} in Fig. 2a. The ratios from FXR are plotted in red and those from FXL in black. The 2a equivalents for the 5 malignant ROIs are plotted in 2b. Regardless of the model and tissue characteristics, the K^{trans}/v_e ratio within each approach remains constant, indicating the [CR $_o$] time-course is the same regardless of r_{1o} .

Discussion: The key finding from this work is that the K^{trans}/v_e ratio remains the same regardless of the r_{10}/r_{1p} ratio, which indicates that the same [CR_o] time-course is observed regardless of r_{1p} and r_{1p} difference. Even though it is intuitive that an r_{1o} increase could lead to a decrease of K^{trans} , unchanged K^{trans}/v_e ratio is a numerical outcome rather than a pharmacokinetic implication. By differentiating $\Delta R_{1t}(t)$ {Eq. (1) multiplied by (r_{10}, v_e) with respect to K^{trans} and v_e , respectively, one will see changes from that of K^{trans} is much greater. Thus the numerical fittings will first adjust K^{trans} to compensate any r_{10} deviation from r_{10} , then v_e is adjusted accordingly. When in the FXL, this $r_{10} \neq r_{10}$ situation is similar to an error in the AIF scaling (an AIF uncertainty). However, AIF uncertainty can be managed. A 30% or greater r₁₀ change (1) will likely be out of AIF uncertainty and thus noticeably affects K^{trans} and v_e values. For FXR, if [CR_o] remains the same, higher r₁₀ will significantly increase the data sensitivity to water exchange, and the precision of mean intracellular water lifetime can be improved. Interestingly, compared to the Fig. 1 K^{trans} change, the τ_i change (not shown) is much smaller. This is quite reasonable since τ_i measures water exchange kinetics while K^{trans} measures plasma/interstitium CR transfer kinetics. Results from this simulation study may partially explain the observations that DCE-MRI often obtains larger ve values than one would normally expect. In addition, $K^{trans}/v_e = k_{ep}$, the CR intravasation rate constant (3-5). These results also suggest that kep could be a more reliable imaging biomarker in certain in vivo applications. Current work underscores the importance of quantifying r_{10} independently.

Grant Support: NIH: RO1-EB00422, UO1-CA154602.

Reference: 1. Stanisz, Henkelman, Magn. Reson. Med., 44: 665, 2000. 2. Wang, Spiller, Caravan, Magn Reson Med., 63:609-616, 2010. 3. Li, Priest, Woodward, Tagge, Siddiqui, Huang, Rooney, Beer, Garzotto, Springer, Magn Reson Med., 69:171-178, 2013. 4. Tofts, et al., J Magn Reson Imaging, 10:223-232, 1999. 5. Yankeelov, Rooney, Li, Springer, Magn Reson Med., 50:1151-1169, 2003.

