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Target audience: Clinicians and researchers interested in the changes in hepatic blood flow in the presence of fibrosis.

Purpose: Chronic damage to the liver causes fibrosis, stiff tissue, that replaces hepatocytes and hepatic sinusoids. This can lead to hepatic dysfunction, portal
hypertension and ultimately cirrhosis'. The portal vein, which carries nutrient rich blood from the intestines, normally supplies 75% of the blood to the liver; the
remaining blood is supplied by the hepatic artery. Gadolinium (Gd) enhanced MRI can be used to study the dynamics of blood flow in the liver* without having to
perform an invasive catheterization. Here we model the liver’s uptake of Gd using a system of ordinary differential equations and estimate model parameters using a
Bayesian approach, allowing us to obtain not only appropriate model parameters that fit that the data, but their uncertainties as well. The Bayesian framework
incorporates data from Gd MRI and some prior information on the model parameters, which are subsequently estimated using Markov Chain Monte-Carlo estimation.
We use the parameter estimates to investigate the relative contribution of the hepatic artery to the total blood flow in the liver in non-fibrotic versus fibrotic subjects.
Methods: Subjects and Data Gd enhanced MRI was performed on 13 healthy liver donors and 16 subjects with biopsy-diagnosed liver fibrosis. After Gd injection, data
was acquired using a 3D stack of variable density spiral sequence reconstructed at a high temporal frame rate using the TRACER method’. Time courses of Gd
concentration were obtained from these images (assuming a linear relationship between T1 signal and Gd concentration) for liver tissue, hepatic artery and portal vein.
Model Construction We modeled two liver compartments, blood (Cy,) and tissue (C,), using a similar approach to that described previously®. The concentration change
of Gd in the blood compartment is due to three terms (Eq. 1) while the rate of change of concentration in tissue is due only to one term (Eq. 2). F, and F, are the blood
flow values from the hepatic artery and portal vein while C,(t) and C,(t) denote their concentrations over time; Vyand V; are the volumes of the respoctive copartments,

The dynamic expression for facilitated bidirectional transport between compartments is given by (Eq 3), with a and B the kinetic parameters of the transport:

Vo2 = By (Ca(0) = Co(0) + Fp(Go() = Co(®) = VIP'®) (Ba. 1) D=ty (Ba.2) 1PN = a(Co(t) — CuD)/(B+Co() + C(®)  (Eq.3)
Our data from the perfusion experiments consisted of N sampled points in time of the concentration of Gd in the liver tissue, contained in C¢(tgqata) = y. The parameters
that needed to be estimated are collected in 8 = [F,, Fp, a, B, C, (0)]. If we let f(C(8,tgea)) = f(6) and assume an independent Gaussian additive noise model y =
f(8) + €, then our likelihoodis  T(€) = T(y|6) « exp (—%(y —£(0)) T (y - f(e))), (Eq. 4)

where [, is a diagonal covariance matrix, empirically estimated to be the signal variance within the liver tissue ROL Our priors 1(6) consist of positivity constraints on
6 and a Gaussian prior on the initial blood concentration of Gd, i.e. C,(0)~N(, o). Bayes theorem states that the posterior density T(8|y) is proportional to the
likelihood 1(y|0) times the prior ().

Parameter Estimation Our posterior density T(8|y) cannot be solved for analytically, so we used delayed-rejection Metropolis-Hastings* (MH) sampling to explore its
shape and location. We initialized our sampling at the same point for each subject and produced a sample size of 10000 or more, depending on the convergence of the
sample (assessed visually) for that particular subject. The delayed-rejection component of the MH sampling consisted of proposing a smaller step upon rejection of the
full proposal step. The proposal density was a Gaussian centered at the current point, with a standard deviation that varies according to the level of acceptance. If the
acceptance became too low (<15%), we reduced the step size in order to increase acceptance; if the acceptance rate became too high (>50%), we increased the step size
so that the MH sampler could fully explore the parameter space. Once the parameters were estimated, we calculated the percent contribution of aorta to overall blood
flow®: R,= F,/(Fa+ F,) and looked at the histograms of these values for each individual. We investigated the differences between normal and fibrotic cases by
performing a t-test of the mean R, in normal versus fibrotic cases.

Results: The result of sampling is a set of M parameters 0 for each subject, with each 8 corresponding to a different forward model that produces time curves for Cpand
C;. The sampling results for a healthy subject are given in Figure 1 (left panel), with the corresponding distribution of R, in the bottom right plot in red. Figure 1 shows
the corresponding M time curves as a light blue envelope that contains 90% of the forward models (median in red). In Figure 1 we also plot the empirical liver tissue
curve (blue error bars) along with the aorta (black curve) and portal vein (green curve) as measured from the MRIL. The model prediction matches well the empirical
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liver can provide insight as to the status of the patient’s liver tissue health. The preliminary results shown here provide evidence that this type of model and parameter
estimation approach may be used to detect fibrosis without an invasive biopsy or catheterization.
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