
Figure 1: (left panel) Sampling results for the 5 model parameters and the corresponding Rafor a 
particular fibrotic subject. (right panel) The timecourse of the Gd signal in aorta (black), portal vein 
(green), liver (blue error bars), as well as light blue envelopes encompassing 90% of the model 
predictions for Gd tissue concentration. The median model prediction is plotted in red. 
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Target audience: Clinicians and researchers interested in the changes in hepatic blood flow in the presence of fibrosis. 
Purpose: Chronic damage to the liver causes fibrosis, stiff tissue, that replaces hepatocytes and hepatic sinusoids. This can lead to hepatic dysfunction, portal 
hypertension and ultimately cirrhosis1. The portal vein, which carries nutrient rich blood from the intestines, normally supplies 75% of the blood to the liver; the 
remaining blood is supplied by the hepatic artery. Gadolinium (Gd) enhanced MRI can be used to study the dynamics of blood flow in the liver2 without having to 
perform an invasive catheterization. Here we model the liver’s uptake of Gd using a system of ordinary differential equations and estimate model parameters using a 
Bayesian approach, allowing us to obtain not only appropriate model parameters that fit that the data, but their uncertainties as well. The Bayesian framework 
incorporates data from Gd MRI and some prior information on the model parameters, which are subsequently estimated using Markov Chain Monte-Carlo estimation. 
We use the parameter estimates to investigate the relative contribution of the hepatic artery to the total blood flow in the liver in non-fibrotic versus fibrotic subjects. 
Methods: Subjects and Data Gd enhanced MRI was performed on 13 healthy liver donors and 16 subjects with biopsy-diagnosed liver fibrosis. After Gd injection, data 
was acquired using a 3D stack of variable density spiral sequence reconstructed at a high temporal frame rate using the TRACER method5. Time courses of Gd 
concentration were obtained from these images (assuming a linear relationship between T1 signal and Gd concentration) for liver tissue, hepatic artery and portal vein. 
Model Construction We modeled two liver compartments, blood (Cୠ) and tissue (C୲), using a similar approach to that described previously3. The concentration change 
of Gd in the blood compartment is due to three terms (Eq. 1) while the rate of change of concentration in tissue is due only to one term (Eq. 2). Fୟ and F୮ are the blood 
flow values from the hepatic artery and portal vein while Cୟሺtሻ and C୮ሺtሻ denote their concentrations over time; Vୠand V୲ are the volumes of the respoctive copartments, 
The dynamic expression for facilitated bidirectional transport between compartments is given by (Eq 3), with α and β the kinetic parameters of the transport: Vୠ ୢେౘୢ୲ ൌ FୟሺCୟሺtሻ െ Cୠሺtሻሻ ൅ F୮ሺC୮ሺtሻ െ Cୠሺtሻሻ െ V୲Jୠ՜୲ሺtሻ     (Eq. 1) 

ୢେ౪ୢ୲ ൌ Jୠ՜୲ሺtሻ    (Eq. 2)          Jୠ՜୲ሺtሻ ൌ  α൫Cୠሺtሻ െ C୲ሺtሻ൯/ሺβ൅Cୠሺtሻ ൅ C୲ሺtሻሻ      (Eq. 3) 

Our data from the perfusion experiments consisted of N sampled points in time of the concentration of Gd in the liver tissue, contained in C୲ሺtୢୟ୲ୟሻ ൌ y. The parameters 
that needed to be estimated are collected in θ ൌ ሾFୟ, F୮, α, β, Cୠሺ0ሻሿ. If we let fሺCሺθ, tୢୟ୲ୟሻሻ ൌ fሺθሻ and assume an independent Gaussian additive noise model y ൌfሺθሻ ൅ Ԗ,  then our likelihood is          πሺԖሻ ൌ πሺy|θሻ ן exp ቀെ ଵଶ ൫y െ fሺθሻ൯୘Γ஫ି ଵሺy െ fሺθሻሻቁ,   (Eq. 4) 

where Γ஫ is a diagonal covariance matrix, empirically estimated to be the signal variance within the liver tissue ROI. Our priors πሺθሻ consist of positivity constraints on θ and a Gaussian prior on the initial blood concentration of Gd, i.e. Cୠሺ0ሻ~ܰሺµ, σሻ. Bayes theorem states that the posterior density πሺθ|yሻ is proportional to the 
likelihood πሺy|θሻ times the prior πሺθሻ. 
Parameter Estimation Our posterior density πሺθ|yሻ cannot be solved for analytically, so we used delayed-rejection Metropolis-Hastings4 (MH) sampling to explore its 
shape and location. We initialized our sampling at the same point for each subject and produced a sample size of 10000 or more, depending on the convergence of the 
sample (assessed visually) for that particular subject. The delayed-rejection component of the MH sampling consisted of proposing a smaller step upon rejection of the 
full proposal step. The proposal density was a Gaussian centered at the current point, with a standard deviation that varies according to the level of acceptance. If the 
acceptance became too low (<15%), we reduced the step size in order to increase acceptance; if the acceptance rate became too high (>50%), we increased the step size 
so that the MH sampler could fully explore the parameter space. Once the parameters were estimated, we calculated the percent contribution of aorta to overall blood 
flow6: Raൌ Fa/ሺFa൅ Fpሻ and looked at the histograms of these values for each individual. We investigated the differences between normal and fibrotic cases by 
performing a t-test of the mean Ra in normal versus fibrotic cases.   
Results: The result of sampling is a set of M parameters θ for each subject, with each θ corresponding to a different forward model that produces time curves for Cୠand C୲. The sampling results for a healthy subject are given in Figure 1 (left panel), with the corresponding distribution of Ra in the bottom right plot in red. Figure 1 shows 
the corresponding M time curves as a light blue envelope that contains 90% of the forward models (median in red). In Figure 1 we also plot the empirical liver tissue 
curve (blue error bars) along with the aorta (black curve) and portal vein (green curve) as measured from the MRI. The model prediction matches well the empirical 
data for this particular subject; this level of model 
agreement with the data is similar across the 
population. Between populations, the values of Ra were 
significantly higher in fibrotic subjects (59±31%) 
versus controls (23±14%), with p = 8.6x10-4 and t = 3.7.  
Discussion Numerical sampling techniques can be used 
to explore complicated posterior densities that cannot 
be solved analytically. Another advantage of using 
sampling as opposed to other optimization strategies is 
that the result is a distribution of possible models, not a 
single model. This distribution can be used to infer 
uncertainty in the parameters and model estimates by 
inspecting the width of the parameter histograms or 
model prediction curves; the wider the curves and 
histograms, the less certain we are of their value. 
Estimates of arterial supply Ra show that this value is 
statistically larger in fibrotic subjects versus healthy 
controls, where it was a value we would expect. Further 
work will explore construction of different priors that 
can encode knowledge gained in normal populations.  
Conclusion Statistical modeling of Gd uptake in the 
liver can provide insight as to the status of the patient’s liver tissue health. The preliminary results shown here provide evidence that this type of model and parameter 
estimation approach may be used to detect fibrosis without an invasive biopsy or catheterization. 
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