

Optimised segmentation scheme for high-resolution multi-shot 3D-GRASE pCASL with improved point spread function

Enrico De Vita¹, Marta Vidorreta², Xavier Golay³, Maria Fernandez-Seara², David L Thomas³, and Evelyne Balteau⁴

¹Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom, ²Neuroimaging Laboratory, Center for Applied Medical Research, University of Navarra, Spain, ³Academic Neuroradiological Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, United Kingdom, ⁴Cyclotron Research Centre, University of Liège, Liege, Belgium

Purpose. Pseudo-continuous arterial spin labelling 3DGRASE provides high signal-to-noise ratio (SNR) with uniform background suppression (BS) and inversion time in all slices [1-3]. Typical spatial resolution in ASL is around $4 \times 4 \times 6 \text{ mm}^3$. Single shot 3DGRASE can provide higher spatial resolution and whole brain coverage but suffers from severe blurring in the partition/slice direction due to T2 decay if the echo train is excessively long. Multi-shot 3D-GRASE [4-6] has been proposed to reduce echo train duration and related blurring. We propose a new segmentation scheme for an isotropic 3.2mm spatial resolution acquisition combining both in-plane and through-plane segmentation, improving through-plane point spread function (PSF) and SNR of 3DGRASE pCASL.

Methods. 5 subjects were scanned on a 3T Tim Trio Siemens scanner (32-channel head-coil) with 4 segmentation schemes, either 1-shot or 4-shot (Figure 1). Common Parameters: 30 partitions (20% oversampling, 6/8 partial Fourier), FoV (220 mm^2), matrix 64×64 , nominal voxel size (3.2 mm^3), TR = 4100 ms, acquisition time 4'31", BW = 2790 Hz/Pixel, 130° refocusing flip angle, 32 or 8 averages respectively for single-shot and 4-shot schemes. Other parameters are shown in Figure 2 (nPE=PE steps/shot). PCASL labelling and background suppression (BS) were implemented as in [3]. Echo-shifting [8] was applied for segmentation in the PE direction. For each scheme, M0 images were acquired without BS (41s, 8 and 2 averages for single-shot and 4-shot respectively). We acquired images without phase encoding (PE) and BS in order to measure the PSF. The PSF was also simulated with the extended phase graph (EPG) algorithm [7] using $T1/T2/T2^* = 1310/100/45 \text{ ms}$.

Results. Average control and difference images for one subject are shown in Figure 2 with the same intensity scaling. Low segmentation factor in the PE direction leads to severe distortions in the orbito-frontal cortex (red arrows) while through-plane blurring is reduced at shorter Echo Train durations, ETD (yellow arrows). Higher SNR is observed at shorter TE and shorter ETD. Moreover SAR reduces with Turbo Factor (aka ETL): by 11% and 17% in the 2x2 and 4_{PAR}x1_{PE} schemes respectively vs 1-shot and 1_{PAR}x4_{PE} schemes. Simulated PSFs in the partition (through-plane) direction show good agreement with *in vivo* data (Figure 3). As expected the PSF becomes narrower for shorter ETD (2x2 and 4_{PAR}x1_{PE}). Results from the other subjects were consistent with these findings.

Discussion and Conclusions. Novel acquisition schemes using segmentation in the partition direction have been proposed. Taking into account objective criteria (SNR, SAR, spatial resolution and geometric distortions), the best trade-off is achieved for a 4-shot 3DGRASE with the 2_{PE}x2_{PAR} segmentation scheme. This scheme provided promising results and, negligible through-plane blurring, avoiding excessive in-plane geometric distortions, increasing the SNR and reducing the SAR. A wider range of segmentation schemes and echo trains with variable flip angles is currently under investigation for further optimisation.

References. 1. Ye, MRM 2000, 44(1):92; 2. Gunther, MRM 2005, 54:491; 3. Vidorreta, NeurImage 2012; 66C:662; 4. Feinberg ISMRM 2009,622; 4. Cutajar, MAGMA 2012, 25(2):145; 5. Balteau, ESMRMB 2013, 333; 6. Tan, MRM 2011. 66(1):168; 7. Hennig, JMR 1988, 78:397; 8. Feinberg, JMR 1992, 97:177.

Acknowledgments. COST Action BM1103: ASL Initiative in Dementia (AID).

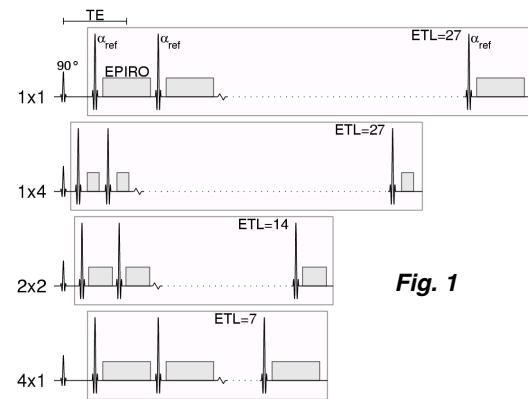


Fig. 1

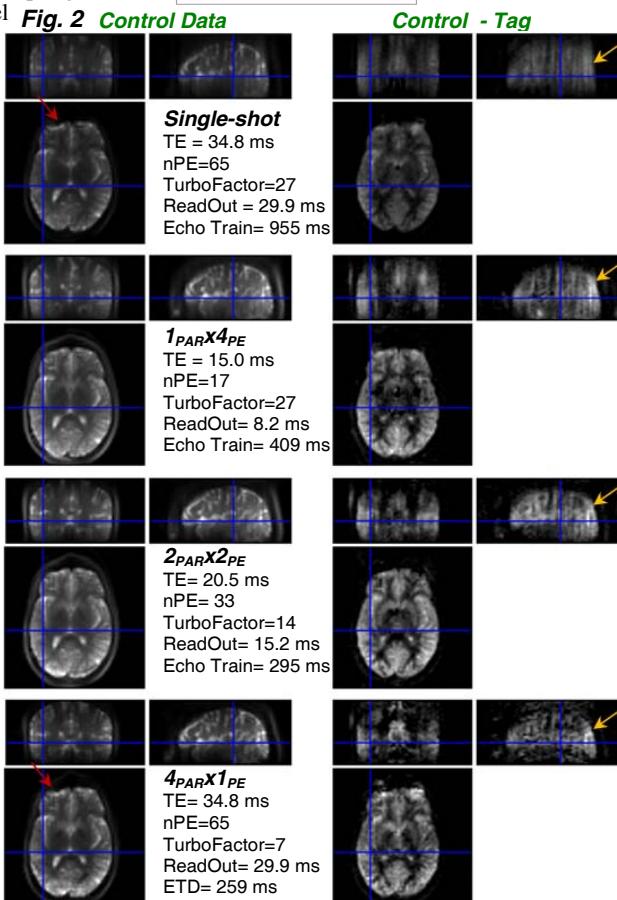
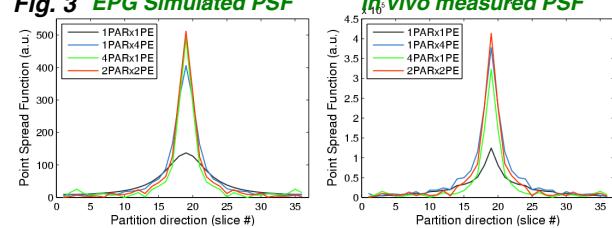



Fig. 2 Control Data

Control - Tag

