Self correction of blood flow effect for brain-fluctuation MRI

Marina Takatsuji¹, Toshiaki Miyati¹, Naoki Ohno¹, Saori Yoshizawa², Tomohiro Noda¹, Satoshi Kobayashi³, Toshifumi Gabata³, and Osamu Matsui³

¹Division of Health Sciences, Institute of Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan, ²School of Health Sciences, College of Medical,

 $Pharmeceutical\ and\ Health\ Sciences,\ Kanazawa\ University,\ Kanazawa,\ Ishikawa,\ Japan,\ ^3Department\ of\ Radiology,\ School\ of\ Medical\ Sciences,\ Kanazawa\ University,\ Kanazawa,\ Ishikawa,\ Japan,\ ^3Department\ of\ Radiology,\ School\ of\ Medical\ Sciences,\ Kanazawa\ University,\ Un$

University, Kanazawa, Ishikawa, Japan

INTRODUCTION:

We have reported that the apparent diffusion coefficient (ADC) obtained from diffusion MRI in brain tissue significantly changed during the cardiac cycle because of the water-molecule fluctuation, and this information assist in the diagnosis of idiopathic normal pressure hydrocephalus (I-NPH) [1]. However, these changes (Δ ADC) are affected by the regional cerebral blood flow (rCBF) [2]. To evaluate hemodynamic independent water fluctuation, we corrected the rCBF effect by using the diffusion data itself.

METHODS:

On a 3.0-T MRI, ECG-triggered single-shot diffusion EPI (b = 0, 200, 600 and 1000 s/mm²) was used with sensitivity encoding and half-scan techniques to minimize the bulk motion. Then, the maximum ADC (ADC_{max}) and minimum ADC (ADC_{min}) in cardiac cycle (perfusion-related diffusion; b = 0 - 200, 0 - 600), and Δ ADC (fluctuation-related diffusion; b = 0 - 1000) were determined in the frontal white matter in healthy volunteers (n = 10). These values were compared with the rCBF obtained by pseudo-continuous arterial spin labeling technique. Finally, we corrected Δ ADC by ADC_{max} having the highest correlation with the rCBF, i.e., Δ ADC divided by the perfusion-related diffusion.

RESULTS AND DISCUSSION:

There was significant correlation between Δ ADC and rCBF (Fig. 1), indicating hemodynamic dependence of the Δ ADC. ADC $_{max}$ with b = 0 - 200 had the strongest positive correlation of all perfusion-related diffusion values (Fig. 2). However, no significant correlation was fund between ADC $_{min}$ and rCBF (Fig. 3). There was no significant correlation between corrected- Δ ADC (= Δ ADC / ADC $_{max}$ with b = 0 - 200) and rCBF, indicating the hemodynamic independence of the corrected- Δ ADC.

CONCLUSION:

Corrected- Δ ADC makes it possible to obtain the degree of fluctuation of the water molecules hemodynamic independently in the brain without additional rCBF scan and measurement.

REFERENCES:

- [1] Ohno N, et al, Radiology 2011; 261: 560-5.
- [2] Kan H, et al, Medical Imaging and Information Sciences 2011; 28: 23-7.

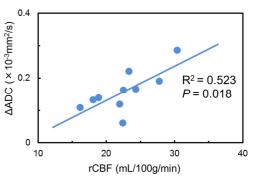


Fig. 1. Relation between \triangle ADC and rCBF.

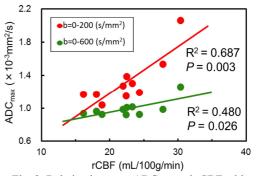


Fig. 2. Relation between ADC $_{max}$ and rCBF with each b value.

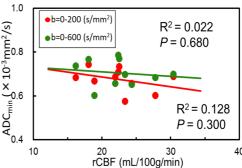


Fig. 3. Relation between ADC $_{min}$ and rCBF with each b value.

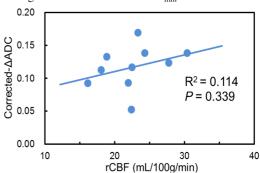


Fig. 4. Relation corrected- Δ ADC and rCBF.