Effects of gradient nonlinearity correction on DTI ADC and FA measurements for assessing breast cancer treatment response

David Newitt¹, Ek Tsoon Tan², Lisa Wilmes¹, Hee Jung Shin³, Luca Marinelli², and Nola Hylton¹

¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States, ²GE Global Research, Niskayuna, NY, United States, ³Radiology, Asan Medical Center, University of Ulsan, Korea

Introduction:

Gradient nonlinearity (GN) is a significant source of error for MRI diffusion measures [1] and presents confounding effects when comparing measurements between patients, between visits for the same patient, and between contra- and ipsi-lateral measurements within a single study. GN results in spatially-varying diffusion-encoding b-values, and generally increases with increasing distance from magnet isocenter. It is thus of great concern in breast imaging where large imaging FOV (>30cm) and large spatial offsets from isocenter of the tissue of interest (>8cm) are common. Recent work [2] indicates that diffusion tensor imaging (DTI) of the breast may provide important information for characterizing breast cancers. Study purpose: Determine the effects of GN correction (GNC) on ADC and FA absolute and % change measurements in a study of breast cancer.

Materials and Methods:

40 patients with biopsy confirmed locally advanced breast cancer (LABC) receiving neoadjuvant chemotherapy (NAC) and enrolled in an institutional review boardapproved, HIPAA compliant, clinical trial at our institution were imaged on a GE Signa 1.5T scanner. All patients gave informed consent. DTI (EPI, 6 directions, b=0,600s/mm²) was acquired pre-NAC (V1) and after 3 cycles of treatment (V2). A GNC program (GE Global Research, Niskayuna, NY)[3] utilizing 5th order spherical harmonics was used to

Figure 1. Tumor ROI (3.0cm²) shown on a) ADC map; b) FA map; c) DCE subtraction image.

retrospectively generate ADC and FA maps. Tumor ROI encompassing regions hyperintense on b=600 s/mm² combined images and hypointense on corresponding ADC maps were defined by a radiologist on a single representative slice (Figure 1). Tumor ROI varied in area from 0.16 – 19.2 cm² (mean=3.2cm²). Reference ROI (1cm² circles) were defined in normal appearing breast tissue in the contra-lateral breast. GN corrected and uncorrected mean ADC and FA values were calculated, along with percent change from V1 to V2 (ΔADC, ΔFA). Results: Mean and SD of the diffusion parameters are

	ADC $(10^{-3} \text{ mm}^2 / \text{ s})$		FA	
Correction	Tumor	Normal	Tumor	Normal
None	1.15 (.14)	2.05 (.23)	0.18 (0.06)	0.21 (0.07)
GNC	1.02 (.13)	1.79 (.19)	0.17 (0.06)	0.19 (0.06)
% GNC Change	-11.2 (3.2)	-12.6 (4.4)	-5.5 (10.9)	-9.2 (18.5)
	ΔADC		ΔFA	
None	32.8 (19.6)	-0.39 (7.5)	13.5 (22.8)	6.69 (24.3)
GNC	33.5 (19.4)	-0.24 (7.0)	20.8 (30.3)	2.38 (31.5)

Table 1. Mean (SD) of diffusion parameters with and w/out GNC for V1 (ADC, FA) and % change V1 to V2 (Δ ADC, Δ FA), and mean change with GNC for V1.

shown in Table 1. On average GNC reduced the measured V1 tumor ADC by 11.2% and normal tissue ADC by 12.6%, this difference due to the ROI for normal tissue being on average slightly further from isocenter (10.7cm v 9.9cm in x-y plane). The percent change in ADC from V1 to V2 (Δ ADC) mean was not appreciably changed with GNC (32.8% v. 33.5% for tumor, -0.4% v -0.2% normal, without v. with GNC), but for individual patients GNC resulted in a difference in the Δ ADC ranging from -5% to 8% (RMS change = 3%). This difference was strongly correlated (R²=0.86) with changes in the ROI position between visits as shown in Figure 2. FA was also generally reduced by GNC, 6% in tumor and 9% in normal (V1). Little correlation (R²=0.13) was observed for change with GNC in Δ FA with change in ROI x-y centroid position.

 ΔFA with change in ROI x-y centroid position. <u>Discussion:</u> At typical breast MRI positions GNC corrected errors of up to 10-15% in ADC. While GN effects may be reduced by measuring changes such as ΔADC , errors up to 6% were still observed in individual cases, with an RMS error of 3%. FA showed comparable changes. GNC will not affect the many other potential sources of errors; including EPI-distortion, diffusion-distortion, motion artifacts, and B1-inhomogeneity. <u>Conclusion:</u> GNC can correct errors that may be significant against typical changes of MRI DTI parameters with treatment.

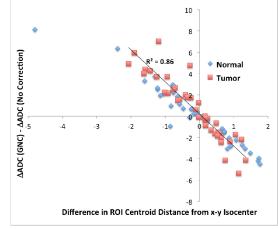


Figure 2. Change in ΔADC with application of GNC plotted against the difference in off-axis position of the ROI centroid, showing positional dependence of correction size..

References:

- Malyarenko D, Galban CJ, Londy FJ, et al. Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. Epub: J Magn Reson Imaging. 2012
- 2. Partridge S, Ziadloo A, Murthy R, et al., Diffusion Tensor MRI: Preliminary Anisotrophy Measures and Mapping of Breast Tumors. J. Magn. Reson. Imaging, 31, 2010
- 3. Tan, E. T., Marinelli, L., Slavens, et al., Improved correction for gradient nonlinearity effects in diffusion-weighted imaging. J. Magn. Reson. Imaging, 38, 2013

This work supported by NIH grants R01CA132870, U01CA151235 and U01-CA166104