IVIM-DTI of Healthy Human Liver

Oi Lei Wong^{1,2} and Michael D Noseworthy^{3,4}

¹Department of Medical Physics and Applied Radiation Science, McMaster University, Hamilton, Ontario, Canada, ²Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong, Hong Kong, ³Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada, ⁴Imaging Research Center, St. Joseph's Healthcare, Hamilton, Ontario, Canada

Target Audience: Research scientists who are interested in body diffusion, perfusion and diffusion tensor analysis.

Purpose: Diffusion weighted imaging (DWI) based on intravoxel incoherent motion (IVIM) theory is useful in quantifying the diffusion and perfusion effects in tissue¹. One variant, diffusion tensor imaging (DTI) provide more quantitative information, such as fractional anisotropy (FA), eigenvalues (λ_1 , λ_2 , λ_3) and eigenvectors (v_1 , v_2 , v_3), using 6 or more non-coplanar gradient encoding directions. Combined IVIM-DTI has recently been applied in human kidney, showing the combination of the two methods being feasible². Both DT metrics and IVIM metrics may provide useful information in categorizing diseased liver tissue. In this study, we demonstrate the feasibility of our modified IVIM-DTI technique in human liver.

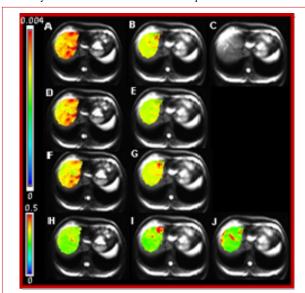


Figure 1: The eigenvalue and FA maps calculated using DTI and IVIM. A, D, F and H correspond to λI , $\lambda 2$, $\lambda 3$ and FA maps calculated using conventional DTI. The equivalent λI , $\lambda 2$, $\lambda 3$ and FA maps calculated using IVIM-DTI were shown in B, E, G and I, respectively. C corresponds to the b-value = 0 s/mm² image. J corresponds to the FA_f map obtained from IVIM-DTI calculation.

Methods: In a study approved by our local institutional review board, 4 healthy volunteers were recruited and liver images were collected using a 3T GE MRI scanner and a 32 channel torso array coil (Discovery MR750, General Electric Healthcare, Milwaukee, USA). Sixteen axial images were acquired with a single shot dual-spin echo DTI EPI sequences (TE/TR = 77/1600ms, 20 gradient directions, slice thickness = 10mm, 35cm FOV, 110x110 matrix, 3 NEX, 35s per b-value setting per NEX) with varying b-value settings (10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500 s/mm²). Respiratory motion compensation was done by breath holding and linear motion correction was done offline with mcflirt² (FSL, FMRIB, Oxford, UK). IVIM-DTI analysis was performed based on the method of Notohamiprojo³. DT metrics at b = 300 mm²/s were calculated using FSL while the IVIM-DT metrics were calculated using a custom matlab script (Matlab 2010a, Mathworks, Natick MA). The calculation of the IVIM-DTI involved the following steps. (1) IVIM fit was performed for each diffusion gradient directions. (2) The eigenvalues of D*, D and f (indicated in the subscript) were estimated using singular value decomposition (SVD), assuming the eigenvectors remained the same using both techniques. FA values (FA_f and FA), mean eigenvalues (M_f, MD and M_{D*}) and eigenvalues ($\lambda 1$, $\lambda 2$, $\lambda 3$, $\lambda f 1$, $\lambda f 2$, $\lambda f 3$) of each IVIM matrix were calculated. Where relevant, a Wilcoxon-ranksum test was performed to compare the results using IVIM-DTI to those obtained using conventional DTI. Comparison between the ROI in liver parenchyma

and hepatic blood vessels was also performed using Wilcoxon-ranksum test, to assess the effect confounding of major blood vessels on the results.

Results: FA calculated by both DTI and IVIM-DTI were similar (*Table 1*). Significantly smaller MD and eigenvalues were obtained

Parameters	DTI	IVIM-DTI
MD [x 10 ⁻³ mm ² /s]	2.6 ± 2	1.5 ± 0.2 *
$M_{D*} [x 10^{-3} mm^2/s]$		55 ± 2
$ m M_{f}$		0.28 ± 0.01
FA	0.16 ± 0.01	0.16 ± 0.04
$\mathbf{FA_f}$		0.17 ± 0.05
$\lambda 1 [x 10^{-3} \text{mm}^2/\text{s}]$	3.0 ± 0.3	1.7 ± 0.7 *
$\lambda 2 [x 10^{-3} \text{mm}^2/\text{s}]$	2.5 ± 0.1	1.5 ± 0.2 *
$\lambda 3 [x 10^{-3} \text{mm}^2/\text{s}]$	2.2 ± 0.2	1.5 ± 0.1 *
$\lambda_{\rm f} 1$		0.29 ± 0.05
$\lambda_{\rm f}2$		0.28 ± 0.03
$\lambda_{ m f}3$		0.28 ± 0.03

Table 1: The calculated DTI and IVIM-DTI metrics of the whole liver averaged over 4 healthy volunteers (mean \pm SD). * denotes statistical significant at p < 0.05).

using IVIM-DTI. When a small circular ROI was selection instead of the whole liver, significantly higher FA was obtained in highly vascular areas using IVIM-DTI (*Table 2*).

Discussion: As shown in *Figure 1*, elevation in the FA (I) and FA $_{\rm f}$ (J) were observed in the blood vessels region, showing IVIM-DTI is able to differentiate blood vessels from normal liver tissue. More importantly, significantly smaller liver FA compared to blood vessel FA was obtained using IVIM-DTI (p<0.05). The obtained FA was, in fact, closer to the expectation that liver tissue has isotropic diffusion. Previous work has shown non-linear liver motion, due to cardiac contractility, results in elevated FA, hypothesized to be flow related The IVIM –DTI approach, however, involves separation of flow and diffusion components.

	Liver tissue		Blood vessel	
Parameters	DTI	IVIM-DTI	DTI	IVIM-DTI
MD [x 10 ⁻³ mm ² /s]	1.9 ± 0.3	1.3 ± 0.2 #	2.8 ± 0.5 *	1.6 ± 0.2 #
FA	0.11 ± 0.05	0.05 ± 0.02	0.13 ± 0.04	0.21 ± 0.07 *
$\lambda 1 [x 10^{-3} \text{ mm}^2/\text{s}]$	2.2 ± 0.1	1.3 ± 0.02 #	3.4 ± 0.6	1.7 ± 0.3
$\lambda 2 [x 10^{-3} \text{ mm}^2/\text{s}]$	1.9 ± 0.1	1.22 ± 0.03 #	2.9 ± 0.4	1.5 ± 0.2 #
$\lambda 3 [x 10^{-3} \text{ mm}^2/\text{s}]$	1.8 ± 0.3	1.3 ± 0.2 #	2.6 ± 0.5	1.7 ± 0.4 [#]

Table 2: The DTI and IVIM metric were calculated over a small circular ROI, which cover liver tissue and mostly blood vessels (mean \pm SD). * denotes statistically significant between ROIs (p<0.05). * denotes statistically significant between choice of calculation techniques (p<0.05)

Conclusion: The IVIM-DTI technique is feasible in the liver when using multiple breath holds and subsequent retrospective motion compensation and image registration. The approach minimized pseudo-hepatic anisotropy artifact to the measured metrics in the liver. This technique is potentially useful in assessing diffusive liver disease.

References: [1] Le Bihan D, et al. Radiology. 1988; 168(2):497-505; [2] Jenkinson M, et al. NeuroImage. 2002, 17:825-841; [3] Notohamiprojo M, et al. Proc. ISMRM. 2012; 20:110; [4] Nasu K, Kuroki Y, Sekiguchi R, et al. Radiat Med 2006; 24:438-444.