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Purpose: Diffusion MRI (dMRI) can characterize microscopic diffusion properties of tissue by acquiring multiple images with different diffusion-encoding gradient
directions and/or strengths, with each image corresponding to a point in g-space or ‘b-space’. A broad variety of methods have been proposed to analyze the diffusion
signal (e.g., diffusion tensor imaging (DTI), multi-compartment models, spherical

deconvolution (SD), diffusion spectrum imaging (DSI) and g-ball imaging (QBI)), e Rearestd == lnesrq == inarb == ubicq il
all varying in their preferred or required sampling of q-space '. DSI, for example, ‘ ‘ ‘ ‘“'S'f‘fe_ ‘ ‘ T et ‘
requires g-space to be sampled on a Cartesian grid, whereas (conventional) DTI and 03} , 4
SD approaches typically require the acquisitions to be made on a shell in g-space.

To be able to compare different analysis techniques while keeping the scan time 025 1 b

within a reasonable range, it is convenient to use a particular acquisition strategy
(e.g., Cartesian, single-shell, or multi-shell) and interpolate the required encoding
scheme from this set of data, as is done in hybrid diffusion imaging (HYDI) %
Furthermore, g-space interpolation methods can also be beneficial for detecting and
correcting outliers °, amongst others. However, there is no consensus in the 0.1 1
literature on whether signal interpolation should be done in g- or b-space and on
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which interpolation method to use (i.e., nearest neighbor, linear, cubic, or model- 005+ ]
based using e.g. CHARMED or DKI ). This ‘ad hoc’ signal interpolation may 0 ‘ ‘ ‘ ‘ . . i
strongly influence the numerical accuracy of the computations and, subsequently, 0 10 20 30 40 50 60 70 80 90 100
the metrics derived from the signal ! In this work, we evaluated the difference in | (@ Cart2Cart SNR

interpolated values for different interpolation techniques in both g-space and b- . , , — , oo .

space.

Methods: Interpolation methods: The following interpolation methods were 031 . e 7
compared: nearest neighbor and linear interpolation in both q- and b-space, cubic 025 | |

interpolation in g-space when data is sampled on a Cartesian grid, and DKI-based
interpolation in b-space. For the latter approach, the DKI model was fitted using 02}

iteratively weighted linear least squares °. For interpolation from a grid, 2

interpolation using a look-up table approach was used (interpn in Matlab); for =015 b
interpolation from other configurations, we used interpolation based on Delaunay

triangulation ® (griddatan in Matlab). Simulations: g- and b-space sampling: A oy

framework was developed to construct (multi-) shell and Cartesian sampling 005 | i

patterns in either - or b-space, using the relation b = (2m)?(A — §/3)q? to convert
between spaces. A and § were chosen to be 51.6 and 32.8 ms respectively, allowing 0 ! ! ! I :
for a maximum b-value of 12000 s/mm? on a clinical system (3T, gmax = 61.9 (b) Mulli(;hZCalr(: ;
mT/m). Diffusion signal modeling: The Zeppelin Bingham CSF (ZeppBingCSF)
compartment model ™ was implemented to simulate the diffusion signal at any

given point in g- and b-space. This model provided the best fit to a rich in vivo 03l Lesisd e B
dataset . ZZ R . .

Results: Simulations: Fig. 1 shows three interpolation situations: (a) From 025 - 0 E B
Cartesian grid in g-space with an odd amount of points along the axis to an even jz N s :

grid (Cart2Cart); (b) from multi-shell to Cartesian in g-space (Multish2Cart); and @ 02y 402;"‘ Y o0 ]
(c) from a Cartesian grid in g-space to single shell (Cart2Singlesh). The graphs Z ousl Ca0 i |
represent the root mean square error (RMSE) over all interpolated points (in the

same space as interpolation is done). The difference between interpolation in q- and 0.1k B
b-space is the most prominent for nearest neighbor interpolation in Cart2Cart and

linear interpolation in Multish2Cart. In Cart2Cart, cubic interpolation is 005 -

significantly better than linear. Calculating the interpolated values based on a DKI ‘ ‘ ‘ ; . = - =
fit provided the smallest RMSE for all configurations, independent of SNR. 0 0 10 20 30 40 50 60 70 30 90 100
Discussion and Conclusion: In this preliminary study we have shown the influence | (¢) Cart2Singlesh SNR

of the g-space interpolation method on the error of the interpolated values for [ Fig. 1: RMSE of the interpolated values as function of SNR, averaged over 10
different configurations in simulations. There are differences between interpolation | noise iterations, for different interpolation methods. The inset displays the
in g-space or b-space for some configurations due to the different relative spacing of | original dataset in blue and tlhe interpolated points in red for (a) Cartesian in q-
the points. The strong performance of the DKI-based interpolation may be | SPace (dmax = 0-0f13 pm=" along axis, 9x9x9 grid) to moved Cartesian
explained by the fact that this method uses all acquired points to inform us on the (sq&aiozo(?gggo#%oo%g% axis, §X8,X: %;12112)42 (;32) 1242“1?11?1‘3 shell (bh=
points to be interpolated, whereas the nearest neighbor, linear, and cubic [500, ’ R Is/mm? with [12.42, o ] directions on the
. . . . . . sphere) to Cartesian in g-space (Gmgy = 0.043 um™", 9x9x9 grid ), and (c)
interpolation are mostly determined by the surrounding points in g- or b-space. In

. . . Cartesian in g-space (qmqx = 0.043 um™=! along axis, 9x9x9 grid ) to single
future work we will focus on the evaluation on real data shell (b = 2500 s/mm?, 162 directions on the sphere).
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