
3243
A GPU-based parallel computing framework for accelerating graph theoretical analyses

Tsang-Chu Yu1, Yi-Ping Chao1, Li-Wei Kuo2, Chung-Chih Lin1, Shih-Yen Lin2,3, Hengtai Jan2, Claudia Metzler-Baddeley4, and Derek Jones4
1Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan, 2Institute of Biomedical Engineering and Nanomedicine,
National Health Research Institutes, Miaoli, Taiwan, 3Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, 4School of Psychology,

Cardiff University, Cardiff, United Kingdom

Introduction
Recent studies have suggested that a combination of multi-modal brain magnetic resonance imaging (MRI) techniques (e.g., structural MRI,
functional MRI and diffusion MRI) together with graph theory approaches can help us to noninvasively map structural and functional connectivity
patterns of the human brain [1]. Combination with structural MRI, functional MRI and graph theoretical analyses (GTA), these studies provide the
insights into the architecture and organization of large-scale brain networks (known as the “human connectome”) [2]. Notably, the graph is
comprised of “node”(general cortical/subcortical regions) and “edge”(functional or structural connection between them) to provide a number of
metrics to characterize the local and global efficiency of the network [3]. The aim of this study is to implement an acceleration platform for brain
network analysis based on GPUs and CUDA. In comparison with multi-cores CPU or clusters, GPUs with CUDA is provided with the powerful of
parallel computing and the benefit of low cost. By implementing the fundamental graph algorithm-all pairs shortest path (APSP), our GPU-based
platform of human connectome will make the construction and analysis of large-scale brain network (number of node > 8k) more efficiently and
quickly.
Materials and Methods
All pair shortest path (APSP): The equation of APSP is based on Rubinov’s study[3]. The dij means shortest path length (distance), between nodes i
and j, where gi↔j is the shortest path between i and j. Note that dij = ∞ for all disconnected pairs i, j. In this study, we only focus on binary brain
networks, which can be built by applying a threshold on the weight of edges (such as fractional anisotropy or number of fiber).
Simulated network matrix:
In order to validate the correctness and evaluate the performance of our algorithm using GPUs with CUDA, we use a random matrix generator based
on Erdos-Renyi model to estimate three matrices of 2048, 4096 and 8192 nodes with the matrix density of 25%, 50%, 75% and 95% respectively.
The calculations of APSP were then executed by Brain Connectivity Toolbox (BCT, http://www.brain-connectivity-toolbox.net/), Gretna
(http://www.nitrc.org/projects/gretna) and our GPU/CUDA version. Finally, the results and time costs would be compared between BCT, Gretna and
our algorithm.
Real brain network matrix derived from diffusion tractography:
Data were acquired using the CUBRIC 3T GE HDx MRI system. Cardiac-gated HARDI diffusion MRI employed an optimized 60 directions
gradient vector scheme and b-value 1200s/mm2, 60 slices (2.4mm), FoV 24 cm, matrix 96x96, TE 87ms. Images were corrected for distortions and
motion, with re-orientation of gradient directions and restored in ExploreDTI_4.8.3[4]. The CSD reconstruction is employed to estimate the fiber
orientations. The parameters for fiber tracking are listed here: step size of 1mm, angle threshold of 30o, fiber length range of 50- 500(mm). Two kinds
of brain parcellation including 116 and 180 subdivisions were employed for the construction of brain network here.
The implementation of our algorithm using GPUs/CUDA:
The BCT takes a lot of time in matrix multiplication. Therefore, we try to reduce the time of matrix multiplication in large-scale network through
block matrix. There are three advantages of dividing into block matrix. The first is the data size of each block matrix is small so we can put it into
shared memory. The second is the number of data accessing will reduce because the matrix can load one block size per time. The third is each block
matrix is independent so that we can use the character of GPU to assign each thread a block matrix. Then, the computation can be reduced.
Results
BCT and Grenta ran at 2 Intel xeon processors E5-2670 CPU running at 2.6GHz, 128GB DDR3 memory. Our algorithm ran at Intel i7-3770K CPU
running at 3.5GHz, 16 GB DDR3 memory and the graphic card we use is tesla K20C at 706MHZ and 5GB GDDR5 memory. From the results, our
implementation could reduce half of time with BCT and 638x speedup with Gretna in simulation random network with larger number of nodes (>8k).
Moreover, our algorithm also shows better performance in human brain data with 1.37x and 21x speedup in comparison with BCT and Gretna
respectively.

Table 1. Simulated network matrix results (unit: seconds)
Matrix size Matrix

density
Gretna BCT GPU/CUDA

2048

25% 144.98 0.57 0.28
50% 163.59 0.56 0.28
75% 153.18 0.61 0.28
95% 152.2 0.61 0.28

4096

25% 1178.9 4.36 1.89
50% 1169.3 4.17 1.89
75% 1166.8 4.17 1.89
95% 1168.9 4.08 1.89

8192

25% 9060 28.72 14.19
50% No result 19.75 14.19
75% No result 19.34 14.15
95% No result 18.48 14.17

Table2 Real brain network matrix results (unit:seconds)
 Matrix

size
Matrix
density

Gretna BCT GPU/CUDA

Subject 1 116 37.12% 0.077 0.0042 0.00258
180 28.7% 0.16 0.0115 0.0048

Subject 2 116 42.67% 0.032 0.0023 0.00258
180 31.53% 0.093 0.0061 0.0048

Subject 3 116 40.66% 0.031 0.0024 0.0026
180 31.4% 0.094 0.0056 0.0048

References
[1] Bullmore E., et al, Nature. 10:186-98, 2009. [2] Di Wu et al,
ICPADS, 593-600, 2010. [3] Rubinov, M., et al, NeuroImage. 52:1059-
69, 2010. [4] Leemas A. et al., ISMRM, No. 3537, 2009.

Discussions & Conclusion
The main contribution of the study is to exploit the power of the GPU, to significantly accelerate processing time and facilitate large-scale network
analyses. The results showed that the acceleration of our algorithm applied in human brain network is less than in simulated random network. The
reason is that the computing using GPU needs to move the data from CPU to GPU memory. So, if the matrix size is smaller, the advantages of GPU
computing might be not obvious. On the contrary, if the size of network matrix is larger, all computations could be divided into several tasks for
parallelism and then the processing time could be decreased. Therefore, our development provides a potential for speedy and comprehensive analysis
of brain network with detailed parcellations in the cortex or large amount of dataset in the studies of brain research.

Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 4480.

