3D locally dependent regularization of the diffusion tensor using ICA and TGV
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Purpose: Readout-segmented echo planar imaging (rs-EPI) with 2D navigator-based reacquisition enables the sampling of high-resolution DWI with reduced
susceptibility artifacts'?. However, the poor SNR for shorter scan times limits the clinical applicability of this sequence. It has been shown recently that a user-
independent approach for spatially dependent regularization of the diffusion tensor by means of independent component analysis (ICA) and total variation (TV)
significantly improves fractional anisotropy maps and tractography® allowing for high-resolution diffusion imaging with shorter scan times. In this work we present two
novel improvements for the diffusion tensor regularization. Firstly, the regularization is performed for all three dimensions simultaneously in contrast to the previously
used 2D approach. Secondly, the concept of total generalized variation (TGV)* has been applied that uses a less restrictive assumption of piecewise constant signal
compared to TV regularization. ICA is still used to evaluate the spatially dependent noise distribution of the diffusion tensor allowing for an automated estimation of the
regularization parameter without a priori knowledge.

Methods: Data from a healthy volunteer were measured using an rs-EPI sequence with the following parameters:
TR = 9045 ms, TE = 67 ms, FOV = 240 mm, resolution = 1.5x1.5x1.5 mm?, slices = 70, b = 1000 s/mm?,
diffusion directions = 12, number of readout segments = 11, GRAPPA =3. Measurements were carried out on a
clinical 3T system using a 32-channel head coil. ICA based on entropy bound maximization’ was applied on the
12 directions with an active diffusion gradient to separate diffusion-related components from noise components.
Using the Stejskal-Tanner relation for the denoised DWI data and for the noise separately the diffusion tensor fica
and its corresponding noise tensor fy.s. can be obtained. The 3D TGV regularization was performed by
minimizing the cost function:
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where Q is the 3D domain of computation, u is the denoised tensor data, ¢ a local estimate on the variance
obtained from f.., w a third-order tensor field arising from tensor TGV? regularizationé, ¢ denotes the
symmetrized derivative and oy, o, are fixed parameters. An iterative primal-dual first-order optimization
algorithm’ was used to compute solutions numerically. The noise estimate ¢ was updated during the iteration
using the following rule:
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. . . where 7 is a factor compensating a potential underestimation of the noise level in fy. All calculation and
Figure I: Fractional anisotropy (FA) maps visualization was done with Matlab software (The MathWorks, Inc., MA, USA) on a PC equipped with i7-2600
without regularization (left column) and with CPU with 3.4GHz and 24 GB RAM.
spatially dependent 3D TGV regularization

(right column) in transversal (first row), coronal
(second row), and sagittal (third column) view.

Results: 3D Regularization of the high-resolution diffusion tensor provides fractional anisotropy (FA) maps that
are much more homogeneous and less noisy compared to the unregularized FA maps. Specifically central regions
that suffer from low SNR are denoised successfully while small anatomical details are preserved. Due to the
three-dimensional approach of the proposed regularization algorithm, the excellent denoising properties can be observed for arbitrary slice orientation (see Figure 1).
The visualization of the diffusion tensors in Figure 2 shows that our 3D locally dependent regularization method applied on the entire diffusion tensor successfully
minimizes uncertainties in both the eigenvectors (color and direction) and eigenvalues (shape of the tensors) resulting in a more homogeneous tensor field.

Discussion & Conclusion: In this work we present a new approach for
automated locally dependent regularization of the diffusion tensor. Our
algorithm utilizes TGV regularization that has been shown advantageous
compared to TV regularization®. Staircasing artifacts, often observed when
using TV regularization, can be avoided with TGV. The regularization in three
dimensions simultaneously is a natural choice for denoising a three-dimensional
structure such as white-matter fibers. Uncertainties of eigenvectors and
eigenvalues of the diffusion tensors can be reduced within slices. The
incorporation of the noise distribution, estimated by ICA, into the regularization
procedure allows for a spatially varying regularization parameter that is
evaluated automatically.

Figure 2:Tensor field of the brain stem obtained from the unregularized
diffusion tensor (left) and for the spatially dependent 3D TGV regularized
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