
1312 
Total Variation-Regularized Compressed Sensing Reconstruction for Multi-shell Diffusion Kurtosis Imaging 

Jonathan I. Sperl1, Tim Sprenger1,2, Ek T. Tan3, Vladimir Golkov1,4, Marion I. Menzel1, Christopher J. Hardy3, and Luca Marinelli3 
1GE Global Research, Munich, BY, Germany, 2IMETUM, Technical University Munich, Munich, BY, Germany, 3GE Global Research, Niskayuna, NY, United States, 

4Computer Vision Group, Technical University Munich, Munich, BY, Germany 
 

Introduction: In Diffusion Kurtosis Imaging (DKI) the data are sampled in a series of concentric shells in the diffusion encoding space (q-space) [1]. Typical DKI 
acquisition schemes consist of 5 shells with 30 directions per shell requiring 150 data points in total and a scan time in the order of 5 to 10 minutes. Reducing the num-
ber of acquired data points yields a linear reduction in scan time and may thereby improve the clinical applicability of DKI. Several methods have been proposed to 
accelerate the DKI acquisition by undersampling the multi-shell data and reconstructing the missing data points using compressed sensing (CS) [2-4]. These methods 
work by exploiting sparse signal representations within a shell using particular basis functions (spherical ridgelets, spherical polar Fourier bases etc.). In contrast to that, 
this work proposes to also make use of properties of the data across shells. Similar to the 3D Fourier relation between q-space and the diffusion propagator space (r-
space) exploited in CS-accelerated Diffusion Spectrum Imaging (DSI) [5], the 1D Fourier relation between a radial line in q-space and its reciprocal space is used to 
reconstruct a bundle of 1D propagators which are regularized by a non-Cartesian total variation (TV) operator. 
Theory: Assume a multi-shell diffusion acquisition where the data are sampled on spokes with an equidistant spacing in q (see Fig. 1, left) and characterized by the 
diffusion gradient strength q and spherical coordinates ϕ and ϑ. Exploiting symmetry in q-space, the data can be mirrored at the origin yielding a point-symmetric data 
set (Fig. 1, center). A 1D Fourier transform along each mirrored spoke in q-space yields a bundle of (real valued) 1D propagators in the (r, ϕ, ϑ)-space (Fig. 1, right).  
The data in the (r, ϕ, ϑ)-space are also sampled on a series of shells and can be assumed to vary smoothly within each shell because typical propagators vary slowly 
with direction. This motivates the introduction of a non-Cartesian TV operator on a shell: Consider the set Ni of indices of J neighbors of the i-th spoke (ϕi, ϑi) in circu-
lar order around the spoke. A typical choice for the number of neighbors considered would be J=6, forming a hexagon around the spoke. Hence the root sum of the 
squared finite differences of the propagator bundle p(r, ϕ, ϑ) around the i-th spoke 
and the k-th shell reads FD௞,௜(݌) = ඨ∑ ൬௣൫௥ೖ,ఝೕ,ణೕ൯ି௣൫௥ೖ,ఝ಻/మశೕ,ణ಻/మశೕ൯௦೔,ೕା௦೔಻/మశೕ ൰ଶ௝∈ே೔,௝ஸ௃/ଶ    (1) 

weighted by the distances si,j between the i-th spoke and its j-th neighbor. Note 
that the indexing pairs j and J/2+j in the left and right summands, respectively, 
are used to address neighbors lying opposite one another with respect to the center 
of the hexagon.  
Hence the TV of the propagator p reads 
  TV(݌) = ∑ FD௞,௜(݌)௜,௞ .    (2) 
The TV operator now serves as a regularizer in the following reconstruction task: 

 min௣‖݌࣠ܯ െ ݀‖ଶ +  (3)   ,(݌)TVߣ
where d denotes the undersampled and mirrored q-space data, ࣠ the 1D Fourier 
transform, M the undersampling mask, and λ a scaling parameter. Equation (3) can be solved using an Iterative Shrinkage/Thresholding Algorithm (ISTA) [5-7] yielding 
an optimum propagator ݌୭୮୲. Subsequently, the q-space signal (including the missing data points) can be recovered as ࣠݌୭୮୲. 
Methods: Experiments on a healthy volunteer were performed on a 3T GE MR750 clinical MR scanner (GE Healthcare, Milwaukee, WI, USA) using a 32-channel 
head coil (single shot EPI, single spin echo, TE =84.3 ms, TR = 1.8 s, 96x96, FOV=24 cm) and a 5-shell DKI acquisition with 30 directions per shell, equidistant sam-
pling in q and bmax = 3,000 s/mm2. In addition, b=0-images were acquired every 20-th image and used for affine motion correction. In order to simulate accelerated 
acquisitions, the data were artificially undersampled using acceleration factors R=1.25, R=1.5, R=1.75, and R=2 (corresponding to 120, 100, 85, and 75 data points, 
respectively) and a series of 50 pattern instances per acceleration factor. The proposed CS-reconstruction was performed for all undersampled data sets. Additional 
diffusion MRI data of the same volunteer and identical imaging parameters, consisting of a 515 point DSI acquisition and another 150 point multi-shell acquisition, was 
combined with the fully sampled data and used as a “ground truth” data set. Using weighted linear least squares [8], diffusion and kurtosis tensors were fitted for the 
ground truth (GT), the fully sampled (DKIfull), the undersampled (DKIus) and the CS-reconstructed (DKICS) data sets. 
Typical diffusion and kurtosis metrics such as fractional anisotropy (FA), mean (Kmean), 
maximum (Kmax), and orthogonal (Korth) kurtosis were computed for all fitted tensors. 
Furthermore, the apparent kurtosis coefficient (AKC) was computed for 512 directions 
(isotropically distributed on the unit sphere) and its root mean squared error (RMSE) 
with respect to the GT was determined for every voxel. 
Results: Fig. 2 depicts the RMSE(AKC) (averaged over all voxels) for all patterns. The 
error of DKICS was always lower than for DKIus and  up to R=1.75 even below the error 
of DKIfull. Fig. 3 shows the resulting kurtosis, RMSE(AKC) and FA maps for a single 
pattern at R=1.5. For DKICS, the kurtosis maps appear less noisy and have a better struc-
tural preservation compared to DKIus and partly even to DKIfull. Also the RMSE(AKC) 
is reduced and the FA map is slightly denoised. 
Discussion: The proposed CS reconstruction method for multi-shell acquisitions allows 
acceleration of typical DKI acquisition by a factor of R=1.75 without significant loss in 
the quality of derived kurtosis metrics. Further investigations may compare this ap-
proach with ridgelet-based methods and extend the concept to more general DKI sam-
pling schemes.  
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Fig. 1: Data spaces and transforms for the proposed CS-multi-shell algorithm. Note 
that this is a simplified 2D representation of the 3D scenario. 

Fig. 3: Fitting results for R=1.5 and pattern #42. 
 

Fig. 2: Average RMSE(AKC) for various undersampling patterns. 

Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 4465.


