

Diffusion Weighted Imaging of In-vivo heart with 2nd moment nulling diffusion gradient

Tetsuo Ogino^{1,2}, Toshiaki Miyati³, Marc Van Cauteren⁴, Tomoya Nakamura⁵, Taro Takahara⁶, and Yutaka Imai⁶

¹Healthcare department, Philips Electronics Japan, LTD, Minato-ku, Tokyo, Japan, ²division of Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan, ³Kanazawa University, Kanazawa, Ishikawa, Japan, ⁴Philips Healthcare LTD, Tokyo, Japan, ⁵Tokai University Hospital, Kanagawa, Japan, ⁶Tokai University, Kanagawa, Japan

Purpose: Cardiac Diffusion-weighted imaging (DWI) has a potential clinical application on myocardial infarction visualization [1]. However, image quality is limited by additional signal loss by physiological motion. A bipolar shape diffusion gradient pulse which compensates a phase error caused by velocity term of motion is proved to attenuate the effect of cardiac motion on DWI with b-factor ≤ 400 [2]. A motion compensation until acceleration term of motion (aMC) with 2nd moment nulling is expected to achieve higher b-factor (≥ 500) DWI but prolonged TE may cause SNR reduction. We investigated the feasibility of aMC-DWI combined with ECG triggering on 3.0T MR system with a high SNR cardiac coil.

Methods: The aMC, 2nd moment nulling, shape is shown as Fig.1. An ECG triggering and a respiratory navigator echo (RNAV) are combined on a 3.0T scanner. High SNR of 3.0T scanner and a multi-channel cardiac coil allows reducing the number of acquisitions to 3. As a fat suppression method, combined method of SPIR and SSGR (Slice Selection Gradient Reversal) [3] was employed. Cardiac DWI was performed in 5 healthy volunteers on a 3.0T Philips Achieva TX system. Scan parameters were: single shot SE-EPI, $b=0, 500, 800$ s/mm², thickness/gap = 5/0 mm, 12 slices, FOV 350mm, 3 NSA, 2.5x2.5mm pixel size, SENSE factor 2.0, TE=71ms, TR=12beats. The optimum ECG Trigger delay (TD0) is determined with Balanced TFE cine scan images. Conventional mono polar gradient DWI (CONV) was also performed for comparison. TE for CONV scan = 40ms. Three scans were performed with TD=TD0, TD0+100ms and TD-100ms for both aMC and CONV methods to observe robustness against TD change. ADC map was calculated from acquired DW images ($b=0, 500$ s/mm²). Written informed consent was obtained from all volunteers.

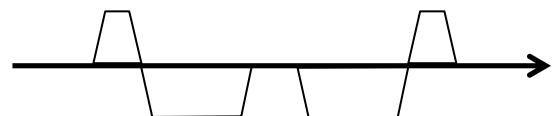


Fig. 1 aMC: 2nd moment nulling pulse

Results: Result images were visually rated. With aMC at $b=500$ s/mm², 5 out of 5 subjects' myocardium were visualized, 3 with uniform signal intensity and 2 with visible non-uniformity. At $b=800$ s/mm², 4 out of 4 subjects were visualized, 1 with uniform signal and 3 with visible non-uniformity. With CONV at $b=500$ s/mm², 3 of 5 subjects were visualized and 2 subjects showed no myocardial signal. At $b=800$ s/mm², 2 of 4 subjects showed DWI images, one uniform and one with artificial signal loss, while 2 subjects showing no signal. Average ADC value among subjects were $2.22 \pm 0.41 \times 10^{-3}$ mm²/s for aMC and $3.29 \pm 1.01 \times 10^{-3}$ mm²/s for conventional method.

Discussion & Conclusion: The proposed method, aMC + ECG, allows cardiac DWI on $b=500$ s/mm² with uniform and robust image quality. On a few subjects, the cardiac DWI was possible even with conventional DWI. However, a small change of trigger delay results severe signal loss (Fig.2 upper row), in contrast to the robustness of aMC-DWI (Fig.2 bottom row).

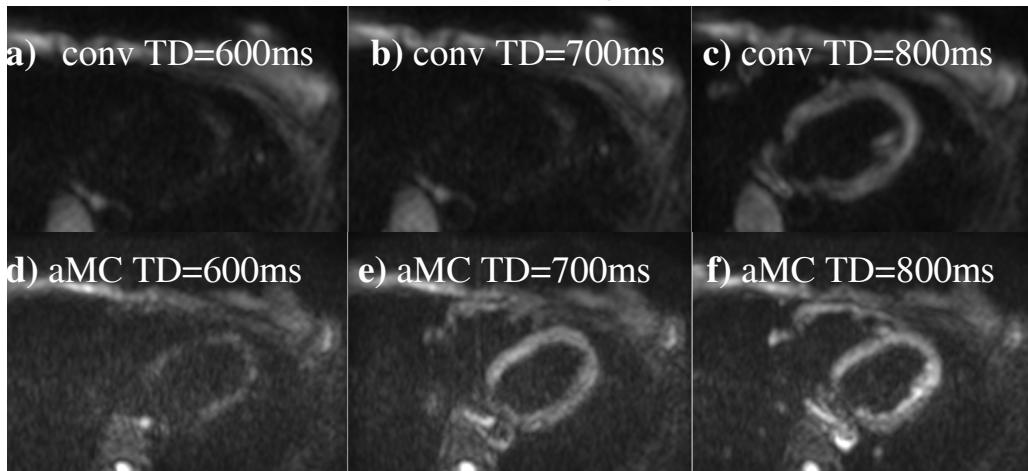


Fig. 2 $b=800$ s/mm² cardiac DWI. Upper row: DWI with conventional method. Bottom row: aMC-DWI. ECG triggering delays are a) & d) 600ms, b) & e) 700ms, c) & f) 800ms. Signal intensity is maintained in a wider range of trigger delay with aMC.

The scan time was short as 3-4 minutes. The aMC-DWI is expected to enable a cardiac DWI up to $b=800$ s/mm² in a clinical level of robustness and a short scan time.

References: [1] Jean-Pierre Laissy, et.al, J. Magn. Reson. Imaging, 2013 Apr 5. doi: 10.1002/jmri, [2] Gamper, U, et.al, MRM 57:331–337 (2007). [3] Horie, T et al. ISMRM 2009 e-poster #4035