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TARGET AUDIENCE: Researchers in ditfusion-weighted MRI/MRS interested in diffusion modeling to assess brain cell architecture.

PURPOSE: Brain cell architecture has a critical influence on molecular diffusion as measured by diffusion-weighted (DW) imaging and spectroscopy (MRS). To date,
two main modeling approaches were developed to quantify the impact of cellular geometry on diffusion. The 1* approach consists in simplifying cellular architecture to
basic geometries, such as spheres or cylinders, for which analytical solutions generally exist. Beyond the computing speed, the advantage is that geometry is described
by a small set of parameters, making it efficient to fit data and extract parameters such as axon diameter and density (e.g. [1,2]). However, it clearly misses the
complexity of cell architectures in the brain. In contrast, the 2™ approach relies on Monte Carlo simulations of many particles diffusing in “realistic” cells, generally
requiring large computing resources. Furthermore, realistic cell geometries are generally directly built manually or from microscopy data, rather than being generated
by a set of parameters, limiting that approach to a few individual cells and failing to capture cell heterogeneity. Here we propose a 3™ approach to capture some features
of brain cells complexity and heterogeneity, while parameterizing the model with a small set of parameters based on cell morphometric statistics as derived from
microscopy. We exemplify how this approach allows evaluating the effect of long-range cell morphology on the apparent diffusion coefficient (ADC) of intracellular
molecules, as may be measured by DW-MRS at long diffusion times 7. A B
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corresponds to d?<<2Dy..T; (where d is the fiber diameter and Dy, the
free diffusion coefficient in cells), which is valid for 7, longer than a few
dozen ms. Hence d will not be considered, but the number of processes
N,roc, the number of successive segments between branching points along "

processes N, and the length of each segment L will be (Fig. 1A), 08

yielding a representation of astrocytes and some neurons. o
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morphometric statistics. N particles (typically a few thousands) are then 0

randomly positioned in the cell. A particle’s position in a given segment Number of successive segments i, :E:

is described by a 1D coordinate x. Then for each particle and each time e o

step (duration 7), a displacement of magnitude \/2Dfm,r is randomly : .

drawn towards smaller or greater x values. If the particle goes through a ol “

node connected to other segments, it is randomly assigned a new o 0

segment connecting this node. At the extremity of a process, it undergoes Fri:fi';“v“ 1

a simple reflection. The phase evolution in the presence of gradients is w

computed for each particle, before summing to calculate overall signal. o4 o —

Influence of morphometry: For a given set of distributions, a 5 . W @ = T T

significant amount of cells (typically a few dozens) can be generated to Segment length L {um) > :

account for cellular heterogeneity (e.g. Fig. 1B and 1C), and particles Figure 1: A) Morphometric statistics for parameters used in the present work;
diffusion can then be simulated in these cells to compute overall signal. Examples of two cells generated from these distributions are given in B) and C).

Matlab implementation: Implementation was done in Matlab (The

Mathworks, Natick, MA, USA), using the Parallel Computing Toolbox. Using a personal computer (8-Go RAM, 6-core 2.66-GHz CPU) and running 6 workers, it
takes ~190 seconds to simulate diffusion during 7,=1 second in 20 cells satisfying Fig. 1A statistics, with 3000 particles in each cell and a 0.5-ms time step resolution,
i.e. with simulation complexity [3] (number of particlesxnumber of iterations) of 1.2x108.

RESULTS & DISCUSSION: The approach proposed here allows exploring various effects. For example, it is possible to test how mean and s.d. of segment length L
affect intracellular ADC as a function of 7,;. While mean L has a strong effect (shorter L leading to stronger ADC drop), the s.d. only has a moderate impact (see Fig.
2A for details), suggesting that a strong cellular heterogeneity, as may occur in large MRS voxels, should not strongly affect diffusion measurements. The same effect
is observed for N, (not shown). To go further, one may wonder if long 7, DW-MRS is only sensitive to restriction at the extremity of processes, i.e. only depends on
the total process length LxN,.,, or if it can allow untangling the effect of L and N,,. To test that, we simulated diffusion in different sets of cells all satisfying
LXN,,=100 pm but varying mean L or N,.,. It appears that ADC time dependency does not only depend on total process length, but specifically depends on L and Ni.,:
large N,.,/small L lead to strong ADC drop before stabilization at longer T,, while small N,.,/large L lead to steadier ADC decrease as Ty is increased (Fig. 2B).

CONCLUSION: The modeling approach proposed here can be generalized and refined by adding other morphometric parameters, depending on the context (e.g. fiber
diameter might be considered for short 7, or high b experiments, or apical dendrites properties to simulate pyramidal neurons). Although it is based on numerical
simulation, our approach remains computationally manageable due to its compact and flexible description of cell morphology. We therefore think it is a valuable
alternative to existing modeling A 0.15

N : . ] B 0.154
strategies. In particular, it might be
used to analyze experimental
diffusion data and quantify long- 0.104 0.104

. ADC DC
range geometrical features such as ; 2
process length, which have not (um /n:)S)OS | (um /n%s:)s |
received much attention so far. ’ [ N,,,ac=10t5] =25 pm*° : Neey=4,1=25 im
N,eg=510 Td (S) [Npmc=10t5 ] Td (s)

1. Assaf et al., MRM 2008;59:1347; o0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
2. Alexander et al., Neurolmage Figure 2: A) Effect of L distribution on intracellular ADC, as a function of T, From top to bottom: mean L=75, 50 and 25
2010;52:1374; 3. Hall et al., IEEE um. Solid line stands for s.d.(L)=0, gray dotted line for s.d.(L)=50% of mean L; B) Differential effect of Ny, and L for
Trans Med Imag 2009;28:1354. constant process length LXN,.,. Gaussian distributions were used. Dy, was set to 0.5 um%ms. ADC was computed by taking

the log of signal attenuation between b=0 and 2 ms/um? obtained with a pair of short gradient pulses.

Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 4424,



