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Target Audience Developers of parallel image reconstruction algorithms. Users who desire high-quality 
magnitude and/or phase images with the “flat” sensitivity profile of the body coil, but SNR and 
undersampling-acceleration gained from a matrix coil.  

Purpose We present a novel algorithm for parallel image reconstruction that, when paired with a slightly 
different acquisition strategy than normally employed in parallel imaging, reconstructs high-quality 
magnitude and phase images even with substantial undersampling and thus reductions in imaging time. 

Method Our novel reconstruction algorithm is related to previous work using the Gauss-Newton method 
to jointly estimate the coil sensitivities and “true” signal using a smoothness constraint on the coil 
sensitivities [1]. We previously expanded on this idea by showing that the smoothness constraint could be 
expressed implicitly by representing the coil sensitivities with compact representations in the Fourier 
domain (similar to the constraint on the kernels estimated by GRAPPA [2]); a formulation that allows for 
significant reduction in the number of variables being optimized [3]. However both our previous work and 
that presented in [1] suffered from an inability to distinguish variations in coil sensitivities from slowly 
varying changes in “true” signal intensity. In the present work, we add to these ideas an intuition borrowed 
from how coil sensitivities are commonly estimated for use in SENSE [4]: an image is taken with the body 
coil, and a second image taken with the matrix coil, with image division giving the sensitivities of each 
matrix channel on the assumption that the body coil image is “flat”. We use this idea to constrain our 
reconstruction by incorporating k-space samples measured with the body coil in addition to our 
measurements acquired with the matrix. We then jointly estimate 1) the “true” k-space signal weighted 
with the body coil sensitivity, and 2) the compact Fourier representation of each matrix channel’s 
sensitivity convolved with the Fourier representation of the inverse of the body coil’s sensitivity (i.e., for 
each channel, the kernel that, convolved with the estimated body-coil-weighted signal, gives the estimate 
of the k-space for that channel). On the assumption that the body coil’s sensitivity is extremely compact in 
the Fourier domain (e.g., just a DC term), then we expect that the kernels estimated in 2) will be almost as 
compact as the true channel sensitivities. Performing an inverse FFT on the estimated body-coil k-space 
estimated in 1) gives an estimate of the “true” image, weighted with the body coil’s sensitivity. 
The estimation problem is framed as a minimization of the weighted mean squared difference (error) 
between the complex measured k-space data and the complex k-space data predicted by the estimated 
parameters (1 and 2 above). In the present example, weights were set to 0 for k-space samples that were 
not acquired, and 1 for samples that were acquired (separate weights for each channel allow us to 
distinguish samples acquired with the body coil from samples acquired with the matrix). Our algorithm 
does not assume binary weights, and so this method could be expanded, at no additional computational 
cost, to account for additional weighting metrics (e.g., from motion-tracking) at each point in k-space. 
Minimization was then performed using a Levenberg-Marquardt (LM) algorithm, with a diagonally-
preconditioned conjugate gradient algorithm iteratively solving each LM-step [5]. The chosen 
parameterization of our model allows us to perform these operations on Cartesian-sampled data without 
forming any of the matrices normally implied by the LM algorithm. Instead, we decompose the “matrix-
times-vector” operation into convolutions, element-wise vector multiplications, and inner-products with 
shifted versions of the vector. These operations are highly parallelizable, and so we developed an initial 
implementation of our optimization algorithm in C++ and OpenCL [6] so that it could run on a GPU. 
A pineapple was scanned using a 3 T TIM Trio (Siemens Healthcare, Erlangen, Germany) and the product 
32-channel head matrix. Two fully-sampled 3D FLASH volumes were acquired sequentially, one with the 
matrix and one with the body coil. The sequence had a 152×160×256 matrix, (1 mm)3 resolution, 12 ms 
TR, 3.43 ms TE, 10° flip angle, 200 Hz/px bandwidth, 2× readout oversampling, and 4:52 scan time. We also acquired two noise-only scans, with no pulses, to allow us 
to estimate the thermal noise covariance matrix of the head matrix and variance of the body coil. Using these, the raw k-space data was linearly transformed so the 
thermal noise had a standard normal distribution in all channels, and readout oversampling was removed. An image volume was produced from the fully-sampled body 
coil data as a baseline for comparison. A second volume was produced using our algorithm with fully sampled body coil and head matrix data (0.5× acceleration 
compared to a single matrix-only acquisition). A third volume was produced with our algorithm where the center 10×10 phase-encode steps were retained from the 
body coil, while the matrix retained the center 10×10 region and a 2×2 hexagonal undersampling pattern in the rest of k-space, giving 3.89× acceleration compared to a 
single scan (effective 1:15 scan time). A fourth volume was produced with our algorithm where the center 20×20 phase-encode steps were retained from the body coil, 
while the matrix retained the center 20×20 region and a 3×3 skewed-hexagonal undersampling pattern in the rest of k-space, giving 7.08× acceleration (effective 0:45 
scan time). In all cases, our algorithm used a 7×7×7 representation of the matrix coils and was run on a NVIDIA Tesla C2050 (NVIDIA, Santa Clara, CA, USA). 

Results and Discussion Fig. 1 shows a representative slice (readout through-plane, phase/partition encoding in-plane) from the four reconstructed volumes. 
Reconstruction times for the complete volumes were 41 minutes (0.5×), 58 minutes (4×), and 60 minutes (7×). Although the 7× has a significant SNR penalty in voxels 
further from the coil elements (expected with reduced scan time), all of the reconstructed volumes are similar to the body coil image, and show no significant artefacts. 

Conclusions We have demonstrated a novel reconstruction algorithm for undersampled multichannel data that includes some samples measured with the body coil. 
The algorithm gives high-quality results even with large acceleration factors. Current runtimes are not practical for clinical use, but further optimization of the software 
and better GPUs will likely improve this substantially. 
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Fig 1. Representative slice from reconstructed volumes. 
Rows from top: full body coil (BC), full body and matrix 
(0.5×), 2×2 undersampled (4×), 3×3 undersampled (7×). 
Columns: magnitude image (left) and phase image (right) 
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