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Target Audience Developers of parallel image reconstruction algorithms. Users who desire high-quality
magnitude and/or phase images with the “flat” sensitivity profile of the body coil, but SNR and
undersampling-acceleration gained from a matrix coil.

Purpose We present a novel algorithm for parallel image reconstruction that, when paired with a slightly
different acquisition strategy than normally employed in parallel imaging, reconstructs high-quality
magnitude and phase images even with substantial undersampling and thus reductions in imaging time.
Method Our novel reconstruction algorithm is related to previous work using the Gauss-Newton method
to jointly estimate the coil sensitivities and “true” signal using a smoothness constraint on the coil
sensitivities [1]. We previously expanded on this idea by showing that the smoothness constraint could be
expressed implicitly by representing the coil sensitivities with compact representations in the Fourier
domain (similar to the constraint on the kernels estimated by GRAPPA [2]); a formulation that allows for
significant reduction in the number of variables being optimized [3]. However both our previous work and
that presented in [1] suffered from an inability to distinguish variations in coil sensitivities from slowly
varying changes in “true” signal intensity. In the present work, we add to these ideas an intuition borrowed
from how coil sensitivities are commonly estimated for use in SENSE [4]: an image is taken with the body
coil, and a second image taken with the matrix coil, with image division giving the sensitivities of each
matrix channel on the assumption that the body coil image is “flat”. We use this idea to constrain our
reconstruction by incorporating k-space samples measured with the body coil in addition to our
measurements acquired with the matrix. We then jointly estimate 1) the “true” k-space signal weighted
with the body coil sensitivity, and 2) the compact Fourier representation of each matrix channel’s
sensitivity convolved with the Fourier representation of the inverse of the body coil’s sensitivity (i.e., for
each channel, the kernel that, convolved with the estimated body-coil-weighted signal, gives the estimate
of the k-space for that channel). On the assumption that the body coil’s sensitivity is extremely compact in
the Fourier domain (e.g., just a DC term), then we expect that the kernels estimated in 2) will be almost as
compact as the true channel sensitivities. Performing an inverse FFT on the estimated body-coil k-space
estimated in 1) gives an estimate of the “true” image, weighted with the body coil’s sensitivity.

The estimation problem is framed as a minimization of the weighted mean squared difference (error)
between the complex measured k-space data and the complex k-space data predicted by the estimated
parameters (1 and 2 above). In the present example, weights were set to 0 for k-space samples that were
not acquired, and 1 for samples that were acquired (separate weights for each channel allow us to
distinguish samples acquired with the body coil from samples acquired with the matrix). Our algorithm
does not assume binary weights, and so this method could be expanded, at no additional computational
cost, to account for additional weighting metrics (e.g., from motion-tracking) at each point in k-space.
Minimization was then performed using a Levenberg-Marquardt (LM) algorithm, with a diagonally-
preconditioned conjugate gradient algorithm iteratively solving each LM-step [5]. The chosen
parameterization of our model allows us to perform these operations on Cartesian-sampled data without
forming any of the matrices normally implied by the LM algorithm. Instead, we decompose the “matrix-
times-vector” operation into convolutions, element-wise vector multiplications, and inner-products with
shifted versions of the vector. These operations are highly parallelizable, and so we developed an initial
implementation of our optimization algorithm in C++ and OpenCL [6] so that it could run on a GPU.

Fig 1. Representative slice from reconstructed volumes.
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A pineapple was scanned using a 3 T TIM Trio (Siemens Healthcare, Erlangen, Germany) and the product (0.5x), 2x2 undersampled (4x), 3x3 undersampled (7x).

32-channel head matrix. Two fully-sampled 3D FLASH volumes were acquired sequentially, one with the
matrix and one with the body coil. The sequence had a 152x160x256 matrix, (1 mm)3 resolution, 12 ms
TR, 3.43 ms TE, 10° flip angle, 200 Hz/px bandwidth, 2x readout oversampling, and 4:52 scan time. We also acquired two noise-only scans, with no pulses, to allow us
to estimate the thermal noise covariance matrix of the head matrix and variance of the body coil. Using these, the raw k-space data was linearly transformed so the
thermal noise had a standard normal distribution in all channels, and readout oversampling was removed. An image volume was produced from the fully-sampled body
coil data as a baseline for comparison. A second volume was produced using our algorithm with fully sampled body coil and head matrix data (0.5x acceleration
compared to a single matrix-only acquisition). A third volume was produced with our algorithm where the center 10x10 phase-encode steps were retained from the
body coil, while the matrix retained the center 10x10 region and a 2x2 hexagonal undersampling pattern in the rest of k-space, giving 3.89x acceleration compared to a
single scan (effective 1:15 scan time). A fourth volume was produced with our algorithm where the center 20x20 phase-encode steps were retained from the body coil,
while the matrix retained the center 20x20 region and a 3x3 skewed-hexagonal undersampling pattern in the rest of k-space, giving 7.08x acceleration (effective 0:45
scan time). In all cases, our algorithm used a 7x7x7 representation of the matrix coils and was run on a NVIDIA Tesla C2050 (NVIDIA, Santa Clara, CA, USA).

Results and Discussion Fig. 1 shows a representative slice (readout through-plane, phase/partition encoding in-plane) from the four reconstructed volumes.
Reconstruction times for the complete volumes were 41 minutes (0.5x), 58 minutes (4x), and 60 minutes (7x). Although the 7x has a significant SNR penalty in voxels
further from the coil elements (expected with reduced scan time), all of the reconstructed volumes are similar to the body coil image, and show no significant artefacts.

Columns: magnitude image (left) and phase image (right)

Conclusions We have demonstrated a novel reconstruction algorithm for undersampled multichannel data that includes some samples measured with the body coil.
The algorithm gives high-quality results even with large acceleration factors. Current runtimes are not practical for clinical use, but further optimization of the software
and better GPUs will likely improve this substantially.
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