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Target Audience: MR researchers and clinical scientists working on Parallel Imaging

Purpose: The estimation of GRAPPA and SPIRIT auto-calibration kernel, which is usually formed as an inverse problem, is an
essential step for Parallel Imaging (PT)"%. Regularizations®* for the kernel coefficients have been discussed before to achieve
more accurate kernel estimation. However, the weighting for each measurement in the inverse problem has not been fully
discussed. In this work, we propose a novel scheme for auto-calibration PI, which consider both measurement and kernel
coefficients to achieve an optimal solution under a statistical model. Experiments compared with previous proposed solution and
demonstrate advantages in kernel value constraints and reconstruction accuracy.

Theory: The computation of GRAPPA kernel' g, or equivalent auto-calibration kernel in other algorithm (SPIRIiT’, etc.) is
commonly formed as an inverse problem: estimate linear interpolation kernel coefficients G from measured k-space samples X
and y given Xg = y. To solve the g, a set of auto-calibration data is fully sampled in the center k-space to use as measurements
and form X and y by reshaping the matrix properly. In order to prevent noise amplification due to the high condition number,
Least-square with Tikhonov regularization was usually used. Advanced regularizations™ for the kernel coefficients were also
proposed, formulated as ming||Xg — yll, + [[Wgll; ., in which W is adaptive weights for kernel coefficients. However, since X

is formed by reshaping moving patches, each patch is not independent from others when they are closed. Besides, the linear
interpolation is not optimal since the noises are also correlated. To tackle this problem, we explored a statistical model and used
two adaptive weights both for the measurement and kernel coefficient to achieve the Maximum Likelihood estimation.

Method: We modeled the linear interpolation with noises (ny, ny), 7=~~~ S 0~ = - oy T T T T T T T T T T T T
which also includes fitting errors, Yieal = Xreal@+ N — y —
ny, = (X — nx)g.The Maximum Likelihood estimation was:

Corvariance Matrix X in dB
1) fix g: noiseless y is $yea1 = E(y - ny|X; g) = Xg,
2) fixy: § = argmin(y — s\’real)TZ;l(y = Vrea) + (Wg)T(Wg)'
In which, W is diagonal adaptive weights matrix based on
gi~N (0, Wifil) and X, is the Covariance matrix of (nxg + ny).
Clearly, there are two different noise related weights: ;1 for the
measurement and W for the coefficients. The analytical solution is:
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Results: An axial brain scan with an eight channel head coil was)|
used to validate the calibration scheme for auto-calibration PI. The:
datasets were all fully sampled and retrospectively under-sampled;
along PE direction. To evaluate noise effect, artificial noise Was:
added in the channel-data based on selected SNR. Tikhonov!
regularization and Adaptive regularization were implemented as
comparison. One estimated Covariance Matrix X, was shown in|
figure 1. The distribution of kernel coefficients was demonstrated!
in figure 2 and the reconstruction error using different calibration,
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Fig.2 Distribution of the
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Discussion: This work models the calibration as an inverse problem of linear interpolation with considerable noise. Two weights
both for measurement and kernel coefficients are explicitly derived to achieve statistical optimal solution for the inverse problem.
In application, double adaptive weights were used to regularize the Least-square and iterative scheme was applied to reach the
convergence of optimal solution. In-vivo experiment data demonstrate the advantage of the proposed scheme for decreased
coefficient error, reconstruction error and noise level. Further investigation to improve and valid proposed scheme is undergoing.
Conclusion: We presented a novel scheme to estimate auto-calibration kernel coefficients by using iterative double adaptive
weights for both ACS measurements and kernel coefficient. Results demonstrate advantages over existing calibration scheme.
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