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Purpose Increasing temporal resolution in FMRI has been largely dependent on time-independent methods based on multi-coil information.
Although strategies based on exploiting limited k-t support [1] or k-t sparsity [2] have been proposed, they have not seen wide adoption.
Recently however, a novel method for accelerating FMRI data using rank-constrained reconstruction, called k-t FASTER [3], has been
demonstrated to successfully extract resting state networks (RSNs) without relying on coil information. This approach exploits well-
established low-rank structure in resting FMRI data, which permits the large dimensionality reductions common to RSN analysis pipelines.
In k-t FASTER, spatio-temporal bases are blindly estimated, without requiring a priori knowledge of k-t support or sparsifying transforms. In
this abstract, we enhance k-t FASTER by incorporating coil-based data consistency constraints to take advantage of the extra information
provided by multiple receive coils. This synergistic approach to low-rank matrix reconstruction produces datasets with lower reconstruction
errors and can facilitate acquisition at higher acceleration factors than can be achieved with rank- or coil-based accelerations alone.

Methods Originally, the iterative hard thresholding with matrix shrinkage algorithm (IHT+MS) [4], which drives the k-t FASTER
reconstruction, was designed to reconstruct the k-t matrix without explicit knowledge of parallel coil acquisitions. Our proposed multi-coil
enhancement projects the estimated k-t matrix into a multi-coil k-t space for error calculation, and transforms the error term back into a
composite k-t space using the SNR-optimal coil combination method [5] for weighted addition to the current estimate. Rank truncation and
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coil measurement with 5% standard deviation, and no noise covariance
between coils. Multi-coil reconstruction using 2, 4, 8 and 16 coil subsets were compared, as well as 16 averages of the original k-t FASTER
method the same additive noise, but absent any coil weighting (i.e., using only rank constraints). All methods used a rank cutoff of 128.

Results The results illustrate the simulated case where rank-only reconstruction performs poorly, and multi-coil k-t FASTER greatly
improves reconstruction metrics. Figure 1 shows the decrease in relative Frobenius norm error with various coil subsets (rank-only = 0
coils), achieving <10% error with 16 coils. Figures 2 and 3 show representative magnitude time-series and image error respectively,
highlighting the fidelity of the 16-coil reconstruction. Figure 4 shows a z-statistic map from a dual regression analysis against a set of
canonical RSN maps, where the 16-coil reconstruction map shows good agreement with ground truth, in contrast to the rank-only data.
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Figure 3 - Example magnitude image errors from the rank-only and 16- Figure 4 - Z-statistic maps thresholded at |z|>2.6 for the right dorsal
coil reconstructions. The reconstructed images are windowed identically.  stream RSN. The 16-coil recon shows good agreement with truth.

Discussion These results show power of the multi-coil reconstruction in a regime where the 8x under-sampling factor and target rank of
128 do not permit robust recovery using rank constraints alone, and where coil-only parallel imaging would also not be feasible. Other
reported approaches to multi-coil low-rank reconstruction include a tensor-expansion method [6], and integrated SENSE-combination
method [7], which is similar to the approach presented here. The multi-coil k-t FASTER method, however, is a simple implementation of this
concept, using a straightforward greedy algorithm that has already demonstrated to have potential for accelerating FMRI data acquisitions
[3]- This approach is expected to be particularly powerful for identification of resting-state networks, where existing k-t accelerations are
insufficient for capturing the broad-band temporal information that is not well described by strict low-rank models.
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