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Purpose: Reducing the measurement noise but also preserving object boundaries and fine

y X, (AeA) = (0.1,2) Y - X, t =20
anatomical structures is a central problem in MRI. A simple approach for dynamic data is to

consider each voxel in isolation and reduce its noise using standard temporal smoothing

techniques. But applying the same noise reduction scheme to all voxels removes interesting

physiological features such as small blood vessels in the denoised images, which defies the

whole purpose of denoising. We could do better by considering that voxels belonging to

physiologically distinct regions have distinct static and dynamic intensities. Topographical ~Figl: The actual image Y, its noise reduced version using
averaging utilizes this idea to reduce noise by averaging signal intensities among neighboring simple topographical averaging and the difference between
voxels. But such low-pass filters blur tissue boundaries as in Figl since in reality many of the ~the two is shown for the 20" acquisition. Some boundaries

neighboring voxels do not belong to the same tissue type. In addition, the computational cost € not preserved. 00 -

of these approaches are very high for MR data with dimensions of ~10° for static or ~107 for soo-t Mone 7:\ 2
dynamic images. Here, we provide a noise reduction technique that is conceptually simple £ w N I\
like topographical averaging methods, computationally efficient, and automatically sensitive e . \ | 700
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to regional boundaries. We further apply our method to DSC MRI of a brain. L \“ \ ool \

Target Audience: Image analysts and image processing scientists. . oo J Ay
Methods: Let Y be the NxT dimensional data matrix where N is the number of voxels and T 0 2ime®do 102 4 o
is the number of temporal samples. Its denoised version X estimates the true noiseless X.  Fjg2: Noise is reduced with different temporal tuning
Topographical smoothing of dynamic data involves, parameters.
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The first term ensures that the estimate is similar to the observation. The second and third
terms respectively penalize too much of spatial and temporal difference between neighboring
voxel and neighboring time points, and basically favor spatiotemporal smoothness.
Technically speaking, matrices D, and D, are gradients in the spatial and temporal domains.
The regularization or tuning parameters /, and , balance the smoothness terms versus fitness ~ Fig3: The same slice of Figl is shown after the
with respect to the data. If they are zero, the estimate is the same as the observation. As 4,  application of our algorithm.

increases, our estimate becomes smoother and boundaries are blurred as more neighboring voxels are averaged. If /, increases, dynamic responses
grow smoother as in Fig2. This method assumes that all neighboring voxels have similar dynamic responses, which is true locally in a uniform
physiological region but not across tissue boundaries.

Our method, however, averages neighboring voxels according to their physiological regions. For example, it will not average two voxels at tissue
boundaries where one voxel pertains to a blood vessel and its neighbor to grey matter. Our method involves the following optimization,

X =argminfy x| +[,0, X} + 4 o, X

where A, is a diagonal matrix with zeros or 4, on the diagonals. It controls whether a voxel should be averaged with its neighbor. To construct A, we
produce the spatial gradient map of the image. It acts as an edge detector and is constructed by subtracting each voxel intensity from its neighbor. If
the difference of two voxels is significantly larger than the typical value of noise, then they belong to different physiological regions and should not
be averaged. But if the difference is comparable to noise, the voxels belong to the same group and spatial averaging reduces their noise. From here
we can see that the zeros on the diagonal of A, correspond to voxels with neighbors of a different tissue type, whereas the nonzero diagonals coincide
with voxels with similar neighbors. This idea is inspired by Donoho’s soft thresholding approach to denoising'. Another advantage of our method is
that regularization parameters 4, , 4, are estimated from the data itself. We marginalize the likelihood over X to let the data tell us about the tuning
parameters. This method is known as the empirical Bayes or marginal likelihood. Taking advantage of the fast matrix inversion techniques for sparse
and banded matrices significantly reduces the computational cost of these optimizations.

MRI: GE EPIs of Gd-DTPA administered at a dose of 0.lmmol/kg and rate of SmL/s were acquired at 1s intervals for first 60s, and at 5s intervals
for next 300s totaling 120 samples. Imaging was performed on a 3T Siemens whole body scanner with an 8ch phased array head coil. Parameters:
TR=1000ms, TE=32ms, 10 contiguous 3mm thick axial slices, matrix 128x128, FOV=220x220mm?, FA=30°, BW=1396Hz/voxel, in-plane
resolution 1.7x1.7mm?

Results: The topographical smoothing of Eq (1) reduces noise but over-smoothens the image. Relevant structures and tissue boundaries are lost as
seen in Figl. The optimal tuning parameters are chosen from the data using the empirical Bayes method, and according in Fig2, a larger one
culminates in overly smooth dynamics. According to Fig3, our method preserves the boundaries while reducing noise. The reduced noise is in the
order of the typical value of background noise ~11. Very little structural information is present in the difference image of Fig3 compared to Figl.
Discussion: This formulation is a batch method, which estimates the dynamics from the whole history of the data and couples temporal changes of
voxels so that most voxels will tend to have similar dynamics. Our spatial penalty incorporates the four horizontally and vertically adjacent voxels
whereas a more sophisticated formulation can include the other four diagonally adjacent ones.

Conclusions: Spatiotemporal noise reduction is an important tool for data analysis. We presented a noise reduction technique in which our prior
belief of spatiotemporal smoothness of the data is expressed in terms of averaging relevant voxels based on which tissue type they belong to, and the
weight placed on this smoothness prior is automatically determined from the data itself. Conceptual simplicity and the computational speed of this
method are among its other advantages.
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