Quantitative evaluation measures for assessment of motion registration efficacy in dynamic contrast imaging
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Audience: Scientists and clinicians performing motion correction with dynamic contrast MRI data
Introduction: Dynamic MRI imaging with contrast (4D) is widely used for understanding the functional
aspects of disease (e.g. tumor permeability, stroke, myocardial infarction). The extended duration of 4D
scan (> 2mins) makes 4D data vulnerable to patient motion. Retrospective motion correction (MC) is
therefore employed to correct 4D data and enable accurate quantification; by ensuring that voxels in a T T N P B S
given region-of-interest (ROI) are minimally influenced by outside voxels [1]. The evaluation of efficacy [Figure. 1: (a) Visual Evaluation of MC in a ROI; (b)

of MC is typically performed: (a).visually, (b).Comparing time-series data in a ROI and assessing the  [Curves before MC and (c) Curves post MC

degree of dispersion of time-series data (Fig 1), (c). Observing certain structures or (d). Difference
images [1]. Use of difference images is not suitable for quantifying improvement in 4D-MRI since contrast related signal change can confound motion related changes.
Therefore the evaluation is at best qualitative in nature and makes comparison of MC efficacy schematic difficult across different sites or vendors. In this work, we
describe methods for computing quantitative metrics to test the fidelity of MC with 4D data. The results are presented in different anatomies and different types of
motion (rigid/non-rigid), before and after the necessary motion correction.

Methods and Materials: Patient Data: Data for our study was acquired from three different patients, covering head, prostate and breast anatomies with different types
of motion: Rigid motion in brain, rigid and non-rigid motion in prostate and non-rigid motion in breast. An appropriate IRB approved each of the studies. Imaging: The
datasets were obtained on a 1.5T GE Signa Genesis and 3.0T GE Signa HDx clinical scanners (GE Healthcare, Waukesha, WI). The protocol was: a. Brain: Axial
slices, 3D EFGRE sequence with 8-channel brain coil, TE = 1.15ms, TR = 4.9 ms, FA = 10°, slice thickness (TH) = 7mm, matrix size = 512 x 512, FOV = 240x 240
mm?, 24 bolus volumes, ~7s / volume. b. Prostate: Axial slices, 3D FSPGR with EIS TORSO coil, TE = 1.3 ms, TR = 3.8 ms, FA = 15°, TH = 6 mm, matrix size = 256
x 256 , FOV =260 x 260 mm2, 80 bolus volumes (~4.5 s/ volume), in 6 mins, ¢. Breast: Axial slices, 3D VIBRANT with 8-channel HDBreast coil, TE = 2.5 ms, TR =
5.3 ms, FA = 10°, TH = 2 mm, matrix size = 512x512 , 85 slices, FOV = 340 x 340 mm2, 7 bolus volumes (~76 s/ volume). Time-series derived metrics: a. Local
correlation metric (LCM): The 3D time-series signal data (S,) is first normalized as: Sinorm = (St — So)/ So, where SO is the first time-point signal. The peak time point
(t,) is computed. To avoid noise voxels from corrupting the metric, only those voxels with max(Snom) > 0 and min(Synom (¥ > 1, ) ) > -2.5% are considered in the
computation. A given voxel which fails the criteria is assigned a metric value of zero. For a valid voxel, we accumulate only the
valid signal time-series curves from a 3x3x3 neighborhood around the voxel. Next a correlation metric is computed among all the
accumulated curves. The mean of correlation coefficients is provided as the local correlation metric. Higher the value of LCM
better is the alignment of the time-points in a given ROL b. Local dispersion metric (LDM): As observed from Fig. 1, both motion
and contrast flow cause change in signal data, so a simple time-series distance metric is in-sufficient for demonstrating motion only
related changes. However, we observe from Fig. 1 that at each time—point, the variance in data is reduced post motion correction.
ol T o This forms the basis of the local dispersion metric. First we stack the valid curves in a given 3D neighborhood along the rows. Next
at each time point (#), we determine the variance in the data across neighborhood voxels (62) (Fig. 2). Local dispersion is then
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[Figure 2: Time-series data L
arranged for LDM calculation calculated as: jmzug It should be noted that lower the value of LDM, better is the alignment of the time-points in a given ROL
Entire analysis was performed using the functionality available in MATLAB and Image] [2]. Motion Registration: For each of the data sets, rigid and non-rigid
motion correction was implemented using the registration functionality available in ITK framework as follows: 1. Brain: Affine
transformation with mutual information (MI) metric; 2. Prostate: Combination of affine
(MI metric) and level-set optic flow non-rigid correction (sum-of-squares error metric)
[3] and 3. Breast: Rigid (MI metric) and 3 order B-Splines based non-rigid correction
(MI metric) [4]. Results:As seen in Fig.3 (a), there is significant motion in prostate DCE-
MRI data, which is suitably corrected by the MC algorithm (Fig 3b). For a given ROI in
prostate region, we notice that post registration, the curves align well to each other;
compared to before registration (Fig 3g). The improvement derived from MC is captured
reliably in the LCM and LDM metric (Fig 3c-f). Notice that LCM metric is very
homogenous in the region of femoral artery and tissue surrounding prostate gland,
compared to original motion corrupted data. As expected, the better alignment of data
results in lower LCM values through-out the prostate FOV, post MC (Fig 3d). Similar
results are demonstrated for brain as well as breast tissue in Figures 4 and 5 respectively.
The improvement post MC can be quantified as shown in Figure 4b and c through
histograms and statistics in a ROL Discussion: LCM primarily reflects temporal
continuity in a given ROI, while LDM captures the spatial continuity in a given ROL
The LCM and LDM maps are thus complimentary and should be used in synchrony for
best judgment of motion correction. The LCM and LDM maps can be used as
standardized mechanism for reporting improvement in dynamic data after MC (See fig

Figure 4: (a). Difference image
before and after MC demonstrates
change. (b, ¢). LCM shows marked
improvement in region of tumor after
MC and is reflected quantitatively in
histograms of tumor ROIL

Fl iw SHPEEERS Sc) and allow easy comparison of performance of different algorithms or multi-site MC
T, L gf =« data. In the current work, we have used the signal intensity data for computation of LCM
o &g ﬂ and LDM metrics. Since the signal data can be corrupted by signal inhomogeneity
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Figure 3: (a) Difference image mapping) will result in better reliable estimation of LCM metric. The LCM and LI?M
(t=0/225s) before and (b) after| MaP fidelity can be further improved by tissue classification and restricting
MC. (d).LCM metric following neighborhood to be within a particular tissue type (such as grey matter/white matter in
MC shows improvement around brain). Next, we intend to determine the sensitivity of the method to different degrees
prostate and femoral arteries and type§ of motion encoun.tered in s.pecifi? anatomy. . Figure 5: (a) Difference image before
(arrows). (e). LDM indicates M Local c_orrelatlon and _dlspersmn_ based measures ha_ve been }ntroduced to | and after MC demonstrates change;
spikes before MC and (f). Are reliably reflect the improvement in dynamic 4D MRI data tissue alignment post especially at regions marked by arrows.
subdued following MC. Curves motion correction. These measures can be used as part of motion correction workflow |1.cMm (b, c)and LDM (d ,e) metric shows

for white ROI (a and b) are and provide means for quantifying the efficacy of motion correction schemes in | marked improvement in these regions
dynamic data across different anatomies and clinical sites. after MC

shown in g and h
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