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Target Audience: This work is relevant for scientists and engineers with an interest in quantitative imaging from magnetic resonance fingerprinting. 
Purpose: Magnetic resonance fingerprinting1 (MRF) is a relatively new technique, and one of its major contributions is to simultaneously provide 
quantitative maps of different tissue parameters via a novel data acquisition technique. At the heart of this quantitative mapping is a dictionary that 
models the predicted signal evolutions from different combinations of T1, T2, and off-resonance values. After the data are acquired, noisy signal 
evolutions are matched to the dictionary by computing the inner product between a noisy signal and each dictionary entry to find the maximum. Ma, 
et al, simulate a dictionary using the Bloch equations with approximately 500,000 combinations of the parameters T1, T2, and off-resonance, sampled 
at each of 1,000 time points, so to classify one signal evolution will require calculating 500,000 inner products between complex-valued vectors of 
length 1,000. Though this template matching algorithm is shown to be accurate1, one desires increased speed without sacrificing the high signal-to-
noise ratio. We propose to compress the size of the dictionary and observed signal evolutions in the 
time domain by applying the singular value decomposition (SVD), thereby reducing the number of 
computations required for the template matching. 
Methods: We begin with a dictionary that contains n entries at each of t time points, n > t, 
represented as the n × t matrix D, whose rows represent the individual entries and columns the time 
points. The SVD of the dictionary is D = UΣV*, where U and V are unitary matrices of sizes n × n 
and t × t, respectively, and Σ is a diagonal matrix of size n × t, with non-increasing diagonal entries 
satisfying σ1 ≥ σ2 ≥ … ≥ σt. Let the rank of D be r, r ≤ t, then the first r columns of the matrix V form 
an orthonormal basis for the dictionary entries. Denoting by Vk = [v1,…vk], the first k columns of V, k 
≤ r, we can project the dictionary onto the k-dimensional subspace spanned by the vectors {v1,…vk},  
by multiplying Dk = DVk, obtaining a dictionary that has been compressed in the time domain. 
Observed signal evolutions are compressed in one of two ways. First, let x be a t-dimensional 
observed signal evolution. Then x is projected onto the same subspace by xk = xVk, and the template 
matching is performed between xk and Dk in the reduced k-dimensional space. Alternatively, the raw 
data can be projected onto the SVD space before being transformed from the spatial frequency domain 
to the image domain. In this case, instead of reconstructing t images from one spiral trajectory each, 
we instead reconstruct k images from t spiral trajectories each, 
reducing the number of NUFFT2 computations and resulting in 
signal evolutions in the reduced space, where template matching is 
then performed. 
Results: By projecting the signal evolutions onto the subspace 
spanned by {v1,…vk}, we are able to reduce the number of 
computations required in the template matching algorithm 
significantly without sacrificing the high SNR of the full algorithm. 
Performing the template match in the reduced space requires ~2k(n 
+ t) complex operations, whereas the full algorithm requires ~2nt 
complex operations. The SNR is maintained with as few as k = 100 
singular vectors; in Figure 1 we plot the SNR of computed T1 
values. When the SVD is applied prior to image reconstruction, more 
computational savings are possible through fewer NUFFT 
computations. In Figure 2, we show the parameter map for T2 
obtained using 25 singular vectors and the difference map comparing 
the T2 values to those obtained using the full t-dimensional template match. All computations were performed in Matlab on a standard desktop 
computer; the reconstruction of each of the k singular images took approximately 27 s, and template matching of the masked image was completed in 
5 seconds using 25 singular vectors and 7 seconds using 100 singular vectors. Computation of the SVD took approximately 196 seconds, though this 
step can be precomputed as it depends only on the dictionary. 
Discussion: Compression of the dictionary and the observed signals in the time domain is easily applied due to the many properties of the SVD3, 
namely that it provides the best low-rank approximation of a given matrix.  
Conclusion: Compression in the time domain is a first step for faster pattern recognition in MRF that maintains the high SNR of the template 
matching algorithm. Despite adding an additional step of projecting the data onto the reduced subspace, the overall computational load can be 
significantly decreased. 
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Figure 1. SNR of T1 parameter values 
calculated via template matching in the 
reduced k-dimensional subspace. 

Figure 2. Left: T2 parameter map (units in ms) computed by projecting the raw data 
onto the SVD space with 25 singular vectors prior to image reconstruction. Right: 
Difference between the T2 maps computed with the full template match as 
compared with the reduced match (units in ms).  
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