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Target Audience:  MR reconstruction specialists 
Purpose:  Quantitative measurements of T1 values have been used to monitor pathology[1] and have yielded more sensitive detection of pathological states (e.g. myo-
cardial edema[2]). Commonly used T1 estimations techniques do not account for noise and produce error prone T1 estimates with  limited accuracy and repeatability. 
Recently a maximum likelihood estimator[3] (MLE) was created to obtain the best estimate of T1 values in the presence of noise, with no a priori assumption about 
image structure, for a variable flip angle spoiled gradient-recalled echo sequence (VFA-SPGR). This was recently extended for the multichannel case.[4] While this 
technique showed improvements of T1 estimation over methods which do not explicitly account for noise, individual voxel estimates nonetheless exhibit high variance. 
Since the brain is comprised of homogenous regions of tissue, it is believed that each region should have similar T1 values. It is hypothesized that adding a spatial prior 
penalizing adjacent voxels with differing T1 values will further improve the quality of estimation. In this study, a spatial prior that promotes piecewise smoothness was 
added to the previously developed cost function. Since standard continuous optimization techniques (e.g., Gauss-Newton) are inefficient and unstable for this class of 
generalized nonlinear least squares problems, an iterative graph cut strategy was developed to provide a robust mechanism for performing regularized T1-estimation  
Methods:  Given an image of x ϵ Nx voxels, the signal from a VFA-SPGR sequence with Ni flip angles and Nc receiver channels for a given repetition time (TR) can be 
represented as: G ൌ FሺTଵሻM ൅ Z, where ሾF୧ሺ ଵܶሻሿ௫,௫ ൌ sin൫θሺx, iሻ൯ ሺ1 െ expሺെTR ⁄ ሺTଵ	ሺxሻ	ሻሻሻ/൫1 െ cos൫θሺx, iሻ൯ expሺെTR Tଵሺxሻ⁄ ሻ൯	, where F(T1) is a TNc by Nx ma-
trix, M is a Nx by Nc matrix of complex variables proportional to the voxel’s spin density and sensitivity function for the receiver coils, θሺ݅ሻ is the effective ith flip angle, 
and Z ~ ԧࣨሺ0,  ሻ, is complex Gaussian noise. B1 field inhomogeneity was not considered at this time. A cost function was constructed from the likelihood functionܫଶߪ
for G, namely JሺTଵ,Mሻ ൌ |FሺTଵሻMെ G|୊ଶ, where |∙|୊ଶ is the Frobenius norm.  In the MLE approach, the unknown parameters M and T1 are obtained by minimizing this 
cost function. Since M is technically unknown but not of interest, it has been demonstrated[3,4] that M can be marginalized out using variable projection[5] (VARPRO) 
resulting in a function of only T1, i.e., JሺTଵሻ ൌ ‖ሾFሺTଵሻFሺTଵሻற െ IሿG‖୊ଶ, where † is the pseudo inverse and I is the identity matrix. In this work, a spatial prior, ܲ ൌ∑ ∑ |Tଵሺnሻ െ RଵሺNሺxሻሻ|୒୬ୀଵ		୒ౙ୶ୀଵ , where R is a neighborhood about voxel x, was incorporated into the cost function such that JሺTଵሻ ൌ λPሺTଵሻ ൅ 	‖ሾFሺTଵሻFሺTଵሻற െ IሿG‖୊ଶ. 
Neighborhoods were defined as an eight nearest neighbor structure with edges normalized for distance. The scaling parameter λ was manually selected to optimize 
performance. As previously shown,[6] the minimization of this regularized nonlinear least squares cost function can be carried out by iteratively minimizing a series of 
binary sub-problems using an iterative graph cut technique. Each sub-problem consisted of allowing each voxel the option of keeping its current T1 value or changing 
its value by a prescribed amount (ΔT1) in order to minimize the cost. At each iteration a new graph was formed. The terminal-weights were assigned using the cost 
function without the spatial prior where weights to the sink were calculated with the current T1 
value and weights to the source used the T1 value adjusted by ΔT1. Edge-weights were assigned 
using Boykov’s formulation[7] in conjunction with the spatial prior. A graph cut was performed on 
the graph to obtain an optimal decision surface to reassign the T1 values to minimize the cost given 
the two choices. T1 values were updated and this process was repeated until there was no prefer-
ence to change T1 values. One healthy volunteer was imaged under an IRB-approved protocol on a 
1.5-Tesla system (GE Signa v.14.0 Waukesha, WI) using a standard three-dimensional SPGR 
sequence (TR/echo time = 15/5 msec, field-of-view = 24 cm, 256 x 256 matrix, BW = ±31.25 kHz, 
NEX = 1, 28 1 mm axial slices) with an 8 channel head coil and five flip angles (5°, 10°, 15°, 20°, 
25°). Reconstruction of a single medial slice was implemented using C++ with OpenMP and min-
cut/max-flow operations were performed using Boykov’s search tree algorithm.[8,9] All processing 
was performed on a dual 3.0 GHz Intel Quad-Core Xenon processor computing server (24 MB L2 
cache and 32 GB 800 MHz DDR2 memory). In this study, ΔT1 was alternated between ±ΔT1 until 
there was no change in T1 values, then ΔT1 was reduced and the process was repeated. The ΔT1 
decimation schedule was set as [500, 300, 200, 150, 100, 75, 50, 35, 25, 15, 10, 7, 5, 3, 1]ms. 
Results:  Figure 1 shows the reconstructed T1 maps of a single slice with and without the spatial 
prior (λ=0). Expansions are shown to illustrate the reduction of variance in the lateral ventricles, 
sulci and putamen. Regions of interest were selected to compute mean and standard deviation of 
white matter (WM), gray matter (GM), lateral ventricle, sulci, and putamen. In the unconstrained 
reconstruction, low signal – primarily in areas with CSF – resulted in regions with a high T1 varia-
bility.  In the proposed method, the mean T1 of the lateral ventricles was reduced from 29.1e3 ± 
81.0e3 ms to 3610 ± 461 ms, and the sulci from 9970 ± 44.0e3 to 2855 ± 593 ms. Minimal chang-
es in mean T1 values and over a 17% reduction in variance was found in the major tissue classes: 
GM (1535 ± 325 ms to 1497 ± 219 ms), the putamen (1307 ± 253 to 1271 ± 165), and WM (819 ± 
143 ms to 813 ± 117 ms). The total processing time for each image was under 120 sec.  
Discussion: The proposed method was able to substantially reduce the variance within the ventricle and the sulci as well as reducing the mean T1 value closer to ex-
pected values for CSF. In regions of high signal, the technique preserved the mean T1 value while providing a moderate reduction in variance. This is expected as the 
regularized cost function attempts to estimate most the likely T1 value for the given signal while simultaneously promoting piecewise smoothness. Despite these ad-
vantages, there are still several open problems concerning the proposed approach.  At present, the regularization parameter, λ, must be manually assigned, and strongly 
determines reconstruction performance. Future effort will focus on how to automatically determine the correct value. Computation time also remains a practical barrier 
with this approach.  The primary computational bottleneck of this method lies in execution of the min-cut/max-flow operations on the constructed graphs. Incorporation 
of recent parallelization concepts for this algorithmic component should substantially reduce this expense.   
Conclusion: The iterative graph cut method for minimizing the regularized nonlinear least squared cost function was able to reduce the variance of T1 values in homog-
enous regions of tissue while preserving distinct boundaries between differing tissue types. Substantial reductions of variance were shown in the ventricles and sulci, 
while moderate reductions of variance were found in WM, GM and the putamen with minimal change to the mean T1 values.  
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Kolmogorov et al., IEEE PAMI, 2004; 2:147-159; [8] Boykov et al., IEEE PAMI, 2004; 9:1124-1137; [9] Boykov et al., (2010). maxflow-v3.01, 
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Figure 1: Comparison between the T1 estimation a.) without the 
spatial prior b.) proposed method. c-d.) Expansions showing the 
ventricle, sulci and putamen are illustrated for each technique. 
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