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Purpose: Quantitative measurements of T; values have been used to monitor pathology!"! and have yielded more sensitive detection of pathological states (e.g. myo-
cardial edema). Commonly used T, estimations techniques do not account for noise and produce error prone T, estimates with limited accuracy and repeatability.
Recently a maximum likelihood estimator'™ (MLE) was created to obtain the best estimate of T, values in the presence of noise, with no a priori assumption about
image structure, for a variable flip angle spoiled gradient-recalled echo sequence (VFA-SPGR). This was recently extended for the multichannel case.'*! While this
technique showed improvements of T, estimation over methods which do not explicitly account for noise, individual voxel estimates nonetheless exhibit high variance.
Since the brain is comprised of homogenous regions of tissue, it is believed that each region should have similar T, values. It is hypothesized that adding a spatial prior
penalizing adjacent voxels with differing T; values will further improve the quality of estimation. In this study, a spatial prior that promotes piecewise smoothness was
added to the previously developed cost function. Since standard continuous optimization techniques (e.g., Gauss-Newton) are inefficient and unstable for this class of
generalized nonlinear least squares problems, an iterative graph cut strategy was developed to provide a robust mechanism for performing regularized T)-estimation
Methods: Given an image of x € Ny voxels, the signal from a VFA-SPGR sequence with N; flip angles and N, receiver channels for a given repetition time (TR) can be
represented as: G = F(T;)M + Z, where [F;(T)],., = sin(8(x,1)) (1 — exp(—=TR / (T; () )))/(1 — cos(8(x,1)) exp(— TR/T;(x))) , where F(T;) is a TN, by Ny ma-
trix, M is a N, by N, matrix of complex variables proportional to the voxel’s spin density and sensitivity function for the receiver coils, 8(i) is the effective i flip angle,
and Z ~ CN(0, a?%1), is complex Gaussian noise. B, field inhomogeneity was not considered at this time. A cost function was constructed from the likelihood function
for G, namely J(T;,M) = |F(T;)M — G|2, where |-|Z is the Frobenius norm. In the MLE approach, the unknown parameters M and T, are obtained by minimizing this
cost function. Since M is technically unknown but not of interest, it has been demonstrated®* that M can be marginalized out using variable projection’®’ (VARPRO)
resulting in a function of only Ty, i.e., J(T;) = ||[F(T)F(T)" — I]G||2, where  is the pseudo inverse and I is the identity matrix. In this work, a spatial prior, P =
YNe SN Ty (n) — Ry (N(x))|, where R is a neighborhood about voxel x, was incorporated into the cost function such that J(T;) = AP(T,) + ||[F(T)F(T)T — 11G]|.
Neighborhoods were defined as an eight nearest neighbor structure with edges normalized for distance. The scaling parameter A was manually selected to optimize
performance. As previously shown,'® the minimization of this regularized nonlinear least squares cost function can be carried out by iteratively minimizing a series of
binary sub-problems using an iterative graph cut technique. Each sub-problem consisted of allowing each voxel the option of keeping its current T value or changing
its value by a prescribed amount (AT)) in order to minimize the cost. At each iteration a new graph was formed. The terminal-weights were assigned using the cost
function without the spatial prior where weights to the sink were calculated with the current T
value and weights to the source used the T, value adjusted by AT,. Edge-weights were assigned
using Boykov’s formulation” in conjunction with the spatial prior. A graph cut was performed on
the graph to obtain an optimal decision surface to reassign the T, values to minimize the cost given
the two choices. T, values were updated and this process was repeated until there was no prefer-
ence to change T, values. One healthy volunteer was imaged under an IRB-approved protocol on a
1.5-Tesla system (GE Signa v.14.0 Waukesha, WI) using a standard three-dimensional SPGR
sequence (TR/echo time = 15/5 msec, field-of-view = 24 cm, 256 x 256 matrix, BW = +31.25 kHz,
NEX =1, 28 1 mm axial slices) with an 8 channel head coil and five flip angles (5°, 10°, 15°, 20°,
25°). Reconstruction of a single medial slice was implemented using C++ with OpenMP and min-
cut/max-flow operations were performed using Boykov’s search tree algorithm."®” All processing
was performed on a dual 3.0 GHz Intel Quad-Core Xenon processor computing server (24 MB L2
cache and 32 GB 800 MHz DDR2 memory). In this study, AT; was alternated between +AT; until
there was no change in T, values, then AT; was reduced and the process was repeated. The AT,
decimation schedule was set as [500, 300, 200, 150, 100, 75, 50, 35, 25, 15, 10, 7, 5, 3, 1]ms.
Results: Figure 1 shows the reconstructed T, maps of a single slice with and without the spatial
prior (A=0). Expansions are shown to illustrate the reduction of variance in the lateral ventricles,
sulci and putamen. Regions of interest were selected to compute mean and standard deviation of
white matter (WM), gray matter (GM), lateral ventricle, sulci, and putamen. In the unconstrained
reconstruction, low signal — primarily in areas with CSF — resulted in regions with a high T, varia-
bility. In the proposed method, the mean T, of the lateral ventricles was reduced from 29.1e3 +
81.0e3 ms to 3610 + 461 ms, and the sulci from 9970 + 44.0e3 to 2855 + 593 ms. Minimal chang- . " ; . . .

es in mean T, values and over a 17% reduction in variance was found in the major tissue classes: Flgqre 1:.Comp arison between the T, estlmatlop a) Wlth(_)m the
GM (1535 = 325 ms to 1497 + 219 ms), the putamen (1307 = 253 to 1271 + 165), and WM (819 =  SPatial prior b.) proposed method. c-d.) Expansions showing the
143 ms to 813 + 117 ms). The total processing time for each image was under 120 sec. ventricle, sulci and putamen are illustrated for each technique.
Discussion: The proposed method was able to substantially reduce the variance within the ventricle and the sulci as well as reducing the mean T, value closer to ex-
pected values for CSF. In regions of high signal, the technique preserved the mean T, value while providing a moderate reduction in variance. This is expected as the
regularized cost function attempts to estimate most the likely T, value for the given signal while simultaneously promoting piecewise smoothness. Despite these ad-
vantages, there are still several open problems concerning the proposed approach. At present, the regularization parameter, A, must be manually assigned, and strongly
determines reconstruction performance. Future effort will focus on how to automatically determine the correct value. Computation time also remains a practical barrier
with this approach. The primary computational bottleneck of this method lies in execution of the min-cut/max-flow operations on the constructed graphs. Incorporation
of recent parallelization concepts for this algorithmic component should substantially reduce this expense.

Conclusion: The iterative graph cut method for minimizing the regularized nonlinear least squared cost function was able to reduce the variance of T, values in homog-
enous regions of tissue while preserving distinct boundaries between differing tissue types. Substantial reductions of variance were shown in the ventricles and sulci,
while moderate reductions of variance were found in WM, GM and the putamen with minimal change to the mean T, values.
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