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Target Audience: Researchers and clinicians with interest in the neurophysiological source of fMRI

Purpose: Diffusion fMRI has been used to alternate the fMRI signal composition of vasculature and tissue. It is reported that signal from high b-value regime is more
weighted with tissue water diffusion changes, while signal from low b-value regime or non-diffusion weighted is dominant by vascular changes [1, 2, 3]. It is known
that distribution of diffusion displacement in brain tissue is non-Gaussian [4], and the mono-exponential free/non-restricted diffusion assumption in most diffusion

fMRI studies may be prone to errors/ may be invalid. In this study,
kurtosis model is used to study the non-Gaussian diffusion changes
in inferior colliculus (IC) during an auditory fMRI experiment.

Methods: Animal Preparation: Eight Sprague-Dawley rats were
anesthetized with a mixture of air and isoflurane (3% for induction
and 1% for maintenance) and mechanically ventilated (60rep/min).
MRI Protocols: All tMRI scans were performed using single shot
SE-EPI sequence in a 7T Bruker scanner. One non-diffusion
weighted (b-values = Oms/um?) and four diffusion weighted (b-
values = 0.5, 1.0, 1.5, 2.2ms/um? images were acquired
consecutively. This cycle run 140 times and synchronized with block
design auditory stimulation in each afMRI section. Diffusion gradient
was applied along phase encoding direction. Imaging parameters:
TR/TE= 1000/32.8ms, 6/A= 5/18ms, FOV= 4.8x4.8cm’, acquisition
matrix= 64x64, slice thickness= 1.4mm. Auditory Stimulation:
Simulation during fMRI was transmitted from a high frequency
speaker (MF1, TDT) and through a custom-built tube to the animal’s
left ear. Bandlimited noise was presented for 50s with 100s resting in
a block design manner (4 blocks) [7]. Data Analysis: The
registration, realignment, slice timing procedures and boxcar function
fMRI fitting were performed using SPM8. Five b value data were
fitted into quadratic exponential kurtosis model to compute dynamic
kurtosis (K) and apparent diffusion coefficient (D) (Figure 2a). B
values = 1.0, 1.5, 2.2ms/um? were jointly fitted in a mono-
exponential decay curve to compute dynamic D (hig b value
diffusion model) and pseudo tissue fraction which is the y-axis
intercept indicated in Figure 2a.

Results: Non-diffusion-weighted BOLD (at Oms/um?) and diffusion-
weighted (DW) BOLD signal (at >Oms/um?) increased during
activation (Figure 1 top row). % non-diffusion-weighted BOLD
change during activation is the highest among all fMRI signals.
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Figure 1. Typical activation maps (p<0.001) of auditory fMRI experiments at the level of inferior
colliculus (IC) at multiple b-values, D (from kurtosis model and high b value diffusion model),
kurtosis and pseudo blood fraction (bf) measurement. 2 by 2 pixels ROI is drawn at the center of IC
in blue.
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Figure 2. a) Quadratic exponential kurtosis model (solid blue line) and mono exponential high b
value diffusion model (dashed line). b) Signal decay curve (Mean+SD) without stimulation(solid
black) and with stimulation (dashed red) (two-tailed paired t-test between baseline and activation
signal ***p<0.001) c) Signal (Mean+SD) change during activation
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Increase in kurtosis is commonly interrupted as more restricted diffusion in
the tissue. The elevation of kurtosis, in this case, might not attribute to
increase fraction of slow diffusion/cell swelling during neuronal activation,
since there was no significant difference in %DW BOLD change among non-
zero b values, instead the increase in kurtosis might be mainly contributed by
the increase in blood flow during activation as indicated by the initial fast
decay of diffusion signal.
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Figure 3. Temporal profile of a) multiple b-values, b) D (from kurtosis model and high b
value diffusion model), kurtosis and pseudo blood fraction (bf) measurement during
auditory fMRI experiments. The black bar indicates the duration of stimuli applied c) Table
of baseline measurement (Mean+SD) of multiple b-values, D (from kurtosis model and
high b value diffusion model), kurtosis and pseudo blood fraction (bf) measurement.

In conclusion, without assuming mono-exponential free diffusion, kurtosis is found to increase which might be mainly contributed by the increase in blood flow. A
caution is made to the interpretation of kurtosis in diffusion MRI when vasculature change is involved.
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