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Target Audience 
This work is intended for neuroimaging researchers and clinicians who study functional connectivity of healthy and patient populations. 
Particularly, this will be of interest to researchers who use multivariate pattern analysis (MVPA) on resting state functional MRI data. 
Purpose 
Resting state functional MRI (rs-fMRI) is a powerful technique for studying whole brain neural connectivity, and allows examination of 
the dynamics of activity within large scale networks potentially affected by pathologies. Our goal is to decompose a subject’s functional 
time series signal into independent components that are anatomically and functionally representative of known resting state networks 
(RSNs) and then accurately classify each component as belonging to one out of seven RSNs as defined by a template previously 
compiled by Allen et al. 1 The overall goal is to create a clinically oriented, automated component classification method using rs-fMRI 
that could complement or substitute task fMRI for patient diagnostic and pre-surgical procedures.  
Methods 
rs-fMRI scans from 23 patients (17 epilepsy, 6 vascular/tumor, 10 male, mean age = 39 years) were acquired on GE MR750 3T and GE 
MR450 1.5T scanners with a gradient echo EPI sequence (28 slices, 150 volumes, 2s TR, 30ms TE, 3.75×3.75×5 mm). Data were 
preprocessed, consistent with Allen et al.’s study, using AFNI 2 and FSL 3 which included slice-timing correction, motion correction, 
transformation into standard MNI space (3×3×3 mm), and spatial smoothing (Gaussian 10 mm FWHM). The patients had no gross 
structural abnormalities and the resultant registration was satisfactory. Data were decomposed into functional networks using individual, 
spatial independent component analysis (ICA), a MVPA technique, implemented in the GIFT toolbox 4 (Figure 1). Components for the 
visual, sensorimotor, default-mode, and auditory networks were visually identified. Each resultant component was spatially correlated 
with 28 ICs of the template (Figure 2) and a ranking by correlation was used for the classification step (using MATLAB). The most 
correlated component was chosen to represent the subject's component, and its network membership was inherited. The metric used 
for measuring classification performance was a matching rate to the researcher’s network identification. 
Results 
The analysis of the patient data set revealed clear and adequate functional components. For the components which the researcher 
identified as the visual network, the classifier achieved 88.7% agreement (of 62 visually-identified network components, the classifier 
matched 55, p-value < 1 × 10-16 [binomial test]). For the sensorimotor network, the classifier was in 57.9% agreement (38 visually-
identified components, 22 classifier matched, p-value < 1 × 10-6). For the default-mode network, the classifier was in 48.9% agreement 
(139 visually-identified components, 68 classifier matched, p-value < 1 × 10-16). For the auditory network, the classifier was in 65.2% 
agreement (46 visually-identified components, 30 classifier matched, p-value < 1 × 10-16). 
Discussion 
Allen et al. showed that an ICA method is able to produce robust and reliable normal brain RSNs that are in great agreement with 
networks identified by previous studies. With clinical motivation in mind, we extended the analysis to a patient population and 
developed an automated network classification method. The results show a promising classification rate that is significantly better than 
random guessing (roughly 1 out of 7, ~15%). 
Conclusion 
The automated classifier showed promising performance for the visual, sensorimotor, default-mode and auditory networks of clinical 
patients. Further development and validation will be done to make this method available as a clinical software tool for automated 
functional network component extraction and classification. 
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Figure 2. The 28 components organized into 7 RSNs (spatial maps plotted as t-statistics) from Allen et al. used as 
the template. 

Figure 1. A spatial map (plotted as a 
t-statistic) of an example component 
identified as a visual network by 
both the researcher and classifier. 
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