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Target Audience
This work is intended for neuroimaging researchers and clinicians who study functional connectivity of healthy and patient populations.

Particularly, this will be of interest to researchers who use multivariate pattern analysis (MVPA) on resting state functional MRI data.
Purpose

Resting state functional MRI (rs-fMRI) is a powerful technique for studying whole brain neural connectivity, and allows examination of
the dynamics of activity within large scale networks potentially affected by pathologies. Our goal is to decompose a subject’s functional
time series signal into independent components that are anatomically and functionally representative of known resting state networks
(RSNs) and then accurately classify each component as belonging to one out of seven RSNs as defined by a template previously
compiled by Allen et al. ' The overall goal is to create a clinically oriented, automated component classification method using rs-fMRI
that could complement or substitute task fMRI for patient diagnostic and pre-surgical procedures.

Methods

rs-fMRI scans from 23 patients (17 epilepsy, 6 vascular/tumor, 10 male, mean age = 39 years) were acquired on GE MR750 3T and GE
MR450 1.5T scanners with a gradient echo EPI sequence (28 slices, 150 volumes, 2s TR, 30ms TE, 3.75x3.75x5 mm). Data were
preprocessed, consistent with Allen et al.’s study, using AFNI 2 and FSL ® which included slice- -timing correction, motion correction,
transformation into standard MNI space (3x3x3 mm), and spatial smoothing (Gaussian 10 mm FWHM). The patients had no gross
structural abnormalities and the resultant registration was satisfactory. Data were decomposed into functlonal networks using individual,
spatial independent component analysis (ICA), a MVPA technique, implemented in the GIFT toolbox * (Figure 1). Components for the
visual, sensorimotor, default-mode, and auditory networks were visually identified. Each resultant component was spatially correlated
with 28 ICs of the template (Figure 2) and a ranking by correlation was used for the classification step (using MATLAB). The most
correlated component was chosen to represent the subject's component, and its network membership was inherited. The metric used
for measuring classification performance was a matching rate to the researcher’s network identification.

Results

The analysis of the patient data set revealed clear and adequate functional components. For the components which the researcher
identified as the visual network the classifier achieved 88.7% agreement (of 62 visually-identified network components, the classifier
matched 55, p-value < 1 x 10™'® [binomial test]). For the sensorlmotor network, the classifier was in 57.9% agreement (38 visually-
identified components, 22 classifier matched, p-value <1 x 10° ) For the default-mode network, the classifier was in 48.9% agreement
(139 visually-identified components, 68 classifier matched, p-value <1 x 10° 16) For the audltory network, the classifier was in 65.2%
agreement (46 visually-identified components, 30 classifier matched, p-value < 1 x 10" )

Discussion

Allen et al. showed that an ICA method is able to produce robust and reliable normal brain RSNs that are in great agreement with
networks identified by previous studies. With clinical motivation in mind, we extended the analysis to a patient population and
developed an automated network classification method. The results show a promising classification rate that is significantly better than
random guessing (roughly 1 out of 7, ~15%).

Conclusion

The automated classifier showed promising performance for the visual, sensorimotor, default-mode and auditory networks of clinical
patients. Further development and validation will be done to make this method available as a clinical software tool for automated
functional network component extraction and classification.
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Figure 1. A spatial map (plotted as a
t-statistic) of an example component
identified as a visual network by Figure 2. The 28 components organized into 7 RSNs (spatial maps plotted as t-statistics) from Allen et al. used as
both the researcher and classifier. the template.
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